
ERDAS APOLLO
Administrator’s Guide
Essentials-SDI Edition

August 2011

Copyright © 2011 ERDAS, Inc.

All rights reserved.

Printed in the United States of America.

The information contained in this document is the exclusive property of ERDAS, Inc. This work is protected under United
States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced
or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any
information storage or retrieval system, except as expressly permitted in writing by ERDAS, Inc. All requests should be
sent to the attention of:

Manager, Technical Documentation
ERDAS, Inc.
5051 Peachtree Corners Circle
Suite 100
Norcross, GA 30092-2500 USA.

The information contained in this document is subject to change without notice.

Government Reserved Rights. MrSID technology incorporated in the Software was developed in part through a project
at the Los Alamos National Laboratory, funded by the U.S. Government, managed under contract by the University of
California (University), and is under exclusive commercial license to LizardTech, Inc. It is used under license from
LizardTech. MrSID is protected by U.S. Patent No. 5,710,835. Foreign patents pending. The U.S. Government and the
University have reserved rights in MrSID technology, including without limitation: (a) The U.S. Government has a non-
exclusive, nontransferable, irrevocable, paid-up license to practice or have practiced throughout the world, for or on
behalf of the United States, inventions covered by U.S. Patent No. 5,710,835 and has other rights under 35 U.S.C. §
200-212 and applicable implementing regulations; (b) If LizardTech's rights in the MrSID Technology terminate during
the term of this Agreement, you may continue to use the Software. Any provisions of this license which could reasonably
be deemed to do so would then protect the University and/or the U.S. Government; and (c) The University has no
obligation to furnish any know-how, technical assistance, or technical data to users of MrSID software and makes no
warranty or representation as to the validity of U.S. Patent 5,710,835 nor that the MrSID Software will not infringe any
patent or other proprietary right. For further information about these provisions, contact LizardTech, 1008 Western Ave.,
Suite 200, Seattle, WA 98104.

ERDAS, ERDAS IMAGINE, Stereo Analyst, IMAGINE Essentials, IMAGINE Advantage, IMAGINE, Professional,
IMAGINE VirtualGIS, Mapcomposer, Viewfinder, and Imagizer are registered trademarks of ERDAS, Inc.

Other companies and products mentioned herein are trademarks or registered trademarks of their respective owners.

Table of Contents iii

Table of Contents
Table of Contents . iii
List of Tables . xiii
List of Figures . xv
Configuration Overview . 1

The Services Framework Architecture . 1
Framework Components . 2
Scalable J2EE Component . 2
ERDAS Servlets . 2
Connectors and Providers . 2
Databases, Flat Files, and Imagery . 3
Configuration Files . 3

Basic Configuration . 3
Servlet Engine Configuration . 4
Actual Servlet Level Configuration . 4
Data Level Configuration . 5
Geographic Information and Transactional Configuration 5

Additional Configuration Steps . 6

Service Configuration . 7
Configuration Methodology . 7
Data services . 8

Provider Concepts . 8
Configuring a Provider . 9
Steps to configure a Provider . 11
Sample providers.fac . 11
How to Control the Provider Configuration . 11

Catalog service . 12
Deployment and Administration of the Server 12
Environment Configuration . 12
Database Schema Management . 14
Security Configuration . 14
Logging Configuration . 18

Typical Scenarios . 21
Publishing Vector Data in WFS . 21

Shapefile Provider on top of a Data Directory 21
Create a Vector Provider on top of Oracle Data 23
Create a Transactional Provider over Oracle . 24
Create a PostgreSQL/PostGIS Vector Provider 28
Create an ArcSDE Vector Provider . 30
Create a Vector Provider on top of GML Data 32
Create Styles on Vector Data . 33

Publishing Images in WMS . 35
Raster Images . 35

iv Table of Contents

Publishing Raster Data in WCS . 35
Simple Coverage Services . 35
Mosaic and List Coverage Services . 36
ArcSDE-Raster . 38

Populate, Browse and Query the Catalog 41
Authentication . 41
Publish a service . 41
Data Discovery . 42
Using the CSW endpoint . 44

Assembling Services and Combining Data 44
Pyramid WMS . 44
Cascading with an OpenGIS WMS Context . 45

Chaining Services . 45
Proxying a OpenGIS-compliant WMS . 45
Proxying a OpenGIS-compliant WFS . 46
SLD Portrayal Service for Features and Coverages 47

Producing Smart Maps . 47
WMS by Portraying Features . 48
Map Dressing Service . 48
Advanced Portrayal . 49
Add a Legend . 49

Sample WFS Requests with Filters . 51
Filter by FeatureID . 51
Filter Equal to an Alphanumeric Property . 52
Filter Equal with Namespaces . 53
Filter on Two Alphanumeric Properties . 54
Geometry Filter: Operator BBOX . 55
Geometry Filter: Operator Intersects with a Given Polygon 56
Geometry Filter: Operator Beyond a Given Point 58
Filter combining Spatial and Non-Spatial Operators 60

Manage Data and Enhance Services . 63
Restrict Data . 63

Disable Interfaces . 63
Hiding Columns . 64
Disable Output Formats . 65

Add a Copyright or Watermark . 65
Add a CRS to WCS GIO Decoder Framework 66

ERDAS IMAGINE Projection Engine . 67
Add an EPSG Code . 70
Define a CRS . 70

Filter in a GetMap . 72
Add User Functions . 74

Add a Java class Function . 74
Add a Datasource Function . 76

Set Up a WFS with GML2 Objects . 78
Insert Data into the Provider . 79
Curves, Surfaces, Rings . 80
Measurements, Units of Measure . 81
Temporal Properties and Operators . 83

Table of Contents v

Portrayal Capabilities . 87
Data Portrayal . 87
Rules and Styles . 87

Rules, the Portraying Logic . 87
Styles, Definition of the Look and Feel . 88

Creating Maps . 88
Styles Templates Description . 88

Creating Styles . 90
Languages . 90

Deploying Styles . 96
Deployment Structure . 97

Using the Map Dressing Service . 98
Grid . 98
North Arrow . 100
Scale Bar . 100
Image Border . 101
Complete Dressing Example . 102

Displaying Statistics in a Map . 103
Call . 103
Output Information . 103
Definitions . 104
Portrayal Statistics Output Values . 104

Producing KML . 105
Limitations. 107

Fast 2D Rendering . 107
Coverage Portrayal . 107

Output Formats . 109
Overview . 109
Image Outputs . 109

Graphic Interlaced Format (GIF) . 109
Joint Photographic Experts Group (JPEG) . 109
Keyhole Markup Language (KML) . 110
Scalable Vector Graphics (SVG) . 111
GeoTIFF . 112
Portable Network Graphic (PNG) . 113
X-BMP . 114
WBMP . 114

Text Outputs . 115
Plain Text Output . 115
HTML . 115
GeoRSS . 116
JSON . 117

Data Outputs . 117
Shapefiles . 117
GML 2/3 . 118
GeoTIFF . 118
JPEG2000, ECW, NITF, DTED . 118

vi Table of Contents

ERDAS IMG . 119

Coordinate Transformations . 121
SRS Concepts . 121
Add a Custom SRS . 121

Projection System Information . 122
Modify epsg.plb . 126
Create usersref.xml . 128
Integrate usersref.xml . 129
Modify coordinate_system_category.xml . 130
Rebuild and Deploy the Webapps . 130
Test the Custom SRS in the Data Manager . 131
Test the Custom SRS in the Web Client . 131

. 133
Usage and Syntax of the SRS/CRS Parameter 133

Administration of ERDAS APOLLO . 135
Introduction . 135

Types of Administration . 135
Servlet-Engine Level Configuration Parameters 135

Servlet-Engine Level Security . 136
Servlet-Specific Configuration Parameters (providers fac) . . . 137
Parameters in the providers fac File . 138

Framework Configuration . 138
WMS (map) Servlet . 141
WFS (vector) Servlet . 141
WCS (coverage) Servlets . 142

Checks . 142
General Checks . 142
Connections . 144

Logging . 144
Debugging . 145

Performance Tuning . 147
Introduction . 147
Tuning the GetMap Request . 148
Tuning the Data Extraction . 149

Tune the RDBMS configuration . 149
Tuning the Database Indexes . 151
Tuning the Native Request . 152

Tuning Portrayal . 153
Tuning the Raster Data Sources . 155
Tuning Parameters and Configuration for WCS GIO Decoders 155

global-processmanager.properties: . 157
local-processmanager.properties: . 158
Tuning the Execution Environment . 159

Table of Contents vii

Conclusions . 160

Using Apache Ant to Rebuild the Webapps . 161
Deploying WAR Files on Supported Servlet Engines 164

JBoss. 164
Jakarta Tomcat . 164

ERDAS APOLLO Tools and Viewers . 165
Service Tester . 165

Customizing Service Tester Templates . 166
Data Indexer . 167

Image Indexing with the Data Manager . 167
Coverage Indexer . 167
Shapefile RTree Builder . 167

Vector Services Utilities . 169
Schema Generator . 169
From-SQL Generator . 170
WFS Loader . 173

Pyramid and Mosaic Builder . 178
Pyramid Builder . 178
WMS Tiler . 179

Catalog Web Interface . 181
Log In to the Web Application . 181
Searching and Browsing Content . 181
Advanced Search . 182
Publishing content . 182
Testing the CSW endpoint . 183
Administration options . 184

Specifying the Storage Directories for Metadata, Thumbnails, &
Pyramids . 185

Changing the Storage Location for Metadata Files 185
Changing the Storage Location for Thumbnail Files 186
Changing the Storage Location for Pyramid Files 187

General Server Configuration . 191
Install Properties . 191

Hiding Clear Text Passwords in Configuration Files 194
Configuration and Customization . 199

Internationalization . 199
ERDAS APOLLO Web Client Configuration . 204

The ERDAS APOLLO Style Editor . 211
Exploring Data . 211

Getting started . 211
Procedure Setting the Connection Time-out 214
Data Sources . 217
Layers . 231
Map Navigation . 238
Views . 244

viii Table of Contents

Styling Data . 251
Brief Introduction to Styling . 251
Managing Styles . 252
Scale Range Management . 258

Rules Reference Guide . 260
“Uniform" Rule . 260
Classifications . 275
“Uniform Roads" Rule . 289
Known Symbol" Rule . 295
Feature Numberer" Rule . 298
HTML Report" Rule . 300
Variable Markers" Rule . 305
Patterner" Rule . 308
Symbol Roller" Rule . 310
Common Elements . 312

FAQ/Troubleshooting . 317
FAQ . 317
Troubleshooting . 320

Rebuilding the Webapps . 323
Deploying WAR Files on Supported Servlet Engines 326

JBoss. 326
Jakarta Tomcat . 326

Detailed Parameters of a Provider . 327
Lists of Possible Parameters. 327
Parameters Common to All Types of Providers 327
Parameters for the Map Framework . 330
Parameters for Vector Providers (WFS Servlet) 335
Parameters for the Coverage Framework 339

Provider Types . 344
Connectors . 344
WFS - or Vector - Connectors . 345

Oracle Connector . 347
Oracle JDBC Thin Driver . 347
Oracle JDBC OCI Driver . 347
Differences between Oracle OCI and Thin Driver 348
Oracle RAC . 348
PostgreSQL/PostGIS . 349
Shapefiles . 351
ArcSDE . 351
DBF Files . 355
Microsoft . 356
ODBC data source . 356
MS-Access . 357

Table of Contents ix

SQLServer 2008 . 360
GML and GML-T . 361
DGN . 362
Proxy WFS . 364
Simple Framework . 364

WMS - or Raster - Connectors . 369
Simple Image . 369
Image Collection . 369
Multiple Images . 370
Proxy WMS . 370
Map Dressing . 371
Pyramid Provider . 371
Portray Provider . 374
ArcSDE-Raster Provider . 376
Context Provider . 378
Oracle 10g GeoRaster Provider . 382

WCS - or Coverage - Connectors . 385
Simple Coverage . 385
Indexed Coverages . 386
Multi Simple Coverages . 389
Hierarchical Coverages . 391
Oracle 10g GeoRaster Coverages . 392
HDF-EOS Coverages . 395
Pyramid Provider . 397

GML Application Schema and Mapping to Databases 399
Introduction . 399
Key Concepts . 400

Application Schema . 400
GML Application Schema . 401
Feature and Feature Type . 402
Mapping . 402

Configuration Overview . 402
Feature Schema Configuration . 404

GML Application Schema Construction . 405
The Steps to Construct the Feature Type Schema 405

Feature Mapping . 407
Mapping Concepts . 407
Mapping Methodology . 408
Mapping Tags Description . 410
Explicit Mapping Definition Steps . 411
SQL Mapping Definition Steps . 413
Automatic Mapping Definition Steps . 415
Relational (Explicit) Mapping Definition Steps 417
Mapping of Enumerations . 429
How to Control Mapping Correctness . 434

Moving to GML3 . 434
ERDAS APOLLO support of GML3 . 434
GML3 Concepts and Schemas . 435
Setting Up a ERDAS WFS Serving GML3 . 435
Migrating a GML2 WFS to GML3 . 436

x Table of Contents

Setting Up a ERDAS WFS Serving GML-SF (Simple Feature) 437

Feature Mapping Tags . 438
Mapping Section <MAPPING> . 438
Metadata Section <INFO> . 444
Capabilities Feature Type Section: <EXPORT> 450
Collection Section: <COLLECTION> . 450
Options Section: <OPTION> . 451
User Functions Section: <UserFunction> 455
Units Definition Section: <UnitDefinition> 455
Units Association Section: <UnitAssociation> 456
WMS Layer Hierarchy Section: <WMS> 456

Coverage and Image Servers . 458
Image Server Concepts . 458

Image Provider Types . 458
Configuring Individual Coverages/Images 459
Configuring a Mosaic or a list of Coverages/Images 461

Image Layers Index File . 461
The Image Data Model . 462

The HDR File Organization . 463
Layout . 466
The World Coordinate File Organization . 467
The Color File Organization . 470
Header Files Summary Table . 470
USGS Metadata . 471
Limitations and Constraints . 471

Imagery Connectors . 472
The GDAL Tool . 472
GDAL Installation Notes . 476
GDAL Configuration . 477

Very Large Coverage Manager . 481
Very Large Coverage Management Description 481
Very Large Image Management . 484
Temporary Files Can Be Very Big . 489
Configuration . 489
Limitations . 490
Issues . 490
Examples . 490

Advanced Configuration . 492
Metadata URL . 492

Templates . 492
Storage . 493
Metadata Configuration in the WMS and WCS Servlets 493
Metadata Configuration in the WFS Servlet . 494

Legend URL . 495

Table of Contents xi

The Map Generation Transformer . 495
Introduction . 495
Using MapGen . 496
MapGen Tags and Attributes . 498
The <MapGen> Tag . 498
Feature Properties (Re)definition . 498
scaleMin and scaleMax . 500
Filter - The "Where" Tag . 500
The "Last" Tag . 501
Warning: MapGen and Portrayal Rules . 503
Scale Dependent Table . 503

Data filtering . 503
Advanced Security . 504

Coarse-Grained Security . 505
Basic ERDAS APOLLO Security . 507
Fine-Grained Security . 508
Security at the Data Source Level . 516
Login Credential Map Example . 518
Oracle Proxy Session Example . 522
Masking . 524

SRS Configuration Parameters . 531
Structure . 531

STORAGE . 532
OPTION . 532
INCLUDE . 533

Object Definition . 533
Object Sharing . 534
Unit Definition . 534
Spheroid Definition . 535
Meridian Definition . 535
Datum Definition . 536
Geographic System Definition . 537
Projected System Definition . 537
Other IDs . 537
Namespaces . 538
Projection Definition . 538
Coordinate System Definition . 541
Structure of the ESRI Mapping File . 542

Installing an Optional Spatial Transformation. 543

ERDAS IMAGINE Projection System Configuration 544
Spheroids and Datums . 544

Parametric Datums . 544
Surface Datums . 545

ERDAS IMAGINE Projection Configuration Files 546
mapprojections.dat . 546
epsg.plb . 546
spheroid.tab . 546
sptable.tab . 547
units.dat . 547

xii Table of Contents

Understanding Datums, Spheroids, and Projections 548
Seven-Parameter Ellipsoidal Transformation 550
Spheroid Example . 551
Surface Datum Types . 551

List of Tables xiii

List of Tables
Table 1: Base Configuration Levels . 3
Table 2: Projection Entry Translation Table .68
Table 3: Supported SLD Tags .91
Table 4: NeedStat Output Meaning . 104
Table 5: Framework Configuration Elements . 138
Table 6: Debug Request Parameters . 143
Table 7: rds.properties Configuration elements . 156
Table 8: global-processmanager.properties Configuration elements 157
Table 9: local-processmanager.properties Configuration elements 158
Table 10: Keywords Operators for Advanced Searches . 181
Table 11: Location of Metadata, Pyramid Layer, Thumbnail, and Geoprocess Output Files . .

185
Table 12: Customizable Parameters in the Install.Properties File 191
Table 13: Graphic Options According to Geometries . 257
Table 14: Antialiasing Options . 262
Table 15: Uniform - Only On Labels options . 264
Table 16: Symbols . 265
Table 17: Alignment options . 268
Table 18: Target Layer options . 269
Table 19: Stroke Width Units . 271
Table 20: End Cap Parameters . 271
Table 21: Join Parameters . 272
Table 22: Dashing Patterns . 272
Table 23: Uniform - Sample Styles . 275
Table 24: Discrete Classification - Data Types . 278
Table 25: Class Populator - Key Ordering. 283
Table 26: Range Classification Types . 288
Table 27: Description of the Map . 289
Table 28: Placement Options . 292
Table 29: Uniform Roads - Detail on the Sample Styles . 295
Table 30: Known Symbol Shapes . 297
Table 31: Known Symbol - Sample Styles . 298
Table 32: Symbols . 307
Table 33: Parameters Applying to All Providers . 328
Table 34: Parameters Applying to Map Providers . 330
Table 35: Parameters Applying to Vector Data Providers . 335
Table 36: Parameters Applying to Coverage Providers . 339
Table 37: Types of Connectors . 344
Table 38: WFS Providers Implementation Level . 346
Table 39: The LOAD_MODULE Function . 366
Table 40: The UPPER Function . 366
Table 41: The LOAD_MODULE Function . 367
Table 42: The LOAD_FILE Function . 367
Table 43: The Mapping Tag . 438
Table 44: The SQL Tag . 438
Table 45: Sub-Elements of the SQL Tag . 439
Table 46: Sub-elements of the Element tag . 443

xiv List of Tables

Table 47: The Info Tag . 444
Table 48: Sub-Elements of the Info Tag . 444
Table 49: The Export Tag . 450
Table 50: Sub-Elements of the Export Tag . 450
Table 51: The Collection Tag . 450
Table 52: The Option Tag . 451
Table 53: The UserFunction Tag . 455
Table 54: Sub-Elements of the UserFunction Tag . 455
Table 55: The UnitDefinition Tag . 456
Table 56: The UnitAssociation Tag . 456
Table 57: The WMS Tag . 457
Table 58: Sub-Elements of the WMS Tag . 457
Table 59: Parameter Names and Descriptions . 465
Table 60: Layout Table . 466
Table 61: HDR File Tags . 469
Table 62: Color File Format Table . 470
Table 63: Header Files Table . 471
Table 64: . 472
Table 65: GDAL-based Source Formats by Platform . 472
Table 66: Geographic Credentials . 510
Table 67: Login Credential Map . 517
Table 68: The masking parameters . 528
Table 69: Types of mask . 530
Table 70: SRS ConfigurationTags . 531

List of Figures xv

List of Figures
Figure 1: Services Framework Architecture . 1
Figure 2: Providers.fac Content . 9
Figure 3: A BBOX Filter Request . 56
Figure 4: A Filter to Intersect with a Polygon . 58
Figure 5: A Filter to not be Beyond a Point . 60
Figure 6: A Filter to Cross a LineString . 62
Figure 7: Projection Entry Diagram . 68
Figure 8: Map Dressing Output . 103
Figure 9: The Projection Identifiers in MapProjections.Dat 123
Figure 10: The Projection Parameters in MapProjections.dat 124
Figure 11: Example of an Entry in the File epsg.plb . 127
Figure 12: The GetMap stream with an Oracle source . 147
Figure 13: The GetMap optimizations with an Oracle source 160
Figure 14: Service Tester applet . 165
Figure 15: RTree Structure . 168
Figure 16: Advanced Search . 182
Figure 17: Advanced Operations . 183
Figure 18: CSW Panel . 183
Figure 19: ERDAS APOLLO Style Editor Main Window 212
Figure 20: Preferences item in the Tools menu . 213
Figure 21: Preferences Window. 214
Figure 22: The File Menu . 215
Figure 23: Open Project . 216
Figure 24: Open Recent Project . 216
Figure 25: Data Menu . 217
Figure 26: Add Data Source . 218
Figure 27: Attach a Newap Feature Server - Step 2 . 219
Figure 28: Attach a New Feature Server - Step 2 . 220
Figure 29: Add Shapefiles . 221
Figure 30: Add Map Server . 222
Figure 31: Attach a New Map Server . 222
Figure 32: Attach a Georeferenced Image . 223
Figure 33: Coverage Source . 224
Figure 34: Portrayal Service URL . 225
Figure 35: Secure Connection Window . 226
Figure 36: Import Context . 227
Figure 37: Data Source Panel . 228
Figure 38: Data Source Properties Item . 228
Figure 39: Data Source Properties Window . 229
Figure 40: Remove Data Source Option . 230
Figure 41: Add Data Menu . 230
Figure 42: History List options . 231
Figure 43: Layers Panel . 232
Figure 44: Add Layer . 232

xvi List of Figures

Figure 45: Layer Properties . 233
Figure 46: Remove Layer . 233
Figure 47: Ordering Layers . 234
Figure 48: Layer Properties Menu Item . 235
Figure 49: Max Count in Layer Properties Window . 235
Figure 50: Use Box in Layer Properties Window. 236
Figure 51: Additional Parameter New Entry Window . 237
Figure 52: Layer Statistics with boston_shape . 238
Figure 53: Change Scale . 239
Figure 54: Fit To Layer . 239
Figure 55: Envelope Panel . 240
Figure 56: Envelope Menu . 240
Figure 57: Overview Panel . 241
Figure 58: The Geometry Editor . 242
Figure 59: Feature Info . 243
Figure 60: List of Features . 243
Figure 61: Gazetteer . 244
Figure 62: Views . 245
Figure 63: Create a New View - Method 1 . 246
Figure 64: Create a New View - Method 2 . 246
Figure 65: View Properties . 247
Figure 66: Enabling Map Dressing . 247
Figure 67: View with Map Dressing Enabled . 247
Figure 68: View with Transparent Areas . 248
Figure 69: Select a Device . 249
Figure 70: New Device . 249
Figure 71: Configure Device . 250
Figure 72: Export Context . 250
Figure 73: The ERDAS APOLLO Style Editor Architecture 252
Figure 74: Create Style Menu . 253
Figure 75: Geometry Property Selection . 253
Figure 76: Styling Rule Selection . 254
Figure 77: Name Selection and Validation . 254
Figure 78: Style Editing Dialog . 255
Figure 79: Scale View . 258
Figure 80: Edit Scale Range Window . 259
Figure 81: Changing the Scale . 260
Figure 82: Point Style Example . 261
Figure 83: Uniform - Graphics Panel (Point Mode) . 262
Figure 84: Uniform - Marker Panel . 263
Figure 85: Uniform - Select Symbol Window . 265
Figure 86: Uniform - Label Panel . 267
Figure 87: Uniform - Graphic Panel (Line Mode) . 270
Figure 88: Uniform - Graphic Panel (Polygon Mode). 273
Figure 89: Uniform - Label Panel . 274
Figure 90: Uniform - Sample Styles . 275

List of Figures xvii

Figure 91: Discrete Classification - Classification Panel 277
Figure 92: Discrete Classification - Opacity . 279
Figure 93: Discrete Classification - Styles Table . 279
Figure 94: Discrete Classification - Styles Table . 280
Figure 95: Classes Populator - General Panel . 281
Figure 96: Classes Populator - Advanced Panel . 282
Figure 97: Range Classification - Classification Panel . 284
Figure 98: Classes Populator - General Panel . 286
Figure 99: Classes Populator - Advanced Panel . 287
Figure 100: Classifications - Sample Result . 288
Figure 101: Uniform Roads - Graphic Panel . 290
Figure 102: Uniform Roads - Label Panel . 291
Figure 103: Uniform Roads - Graphic Panel . 293
Figure 104: Uniform Roads - Select Symbol . 294
Figure 105: Uniform Roads - Sample Styles . 295
Figure 106: Known Symbol - Graphic Panel . 296
Figure 107: Known Symbol - Symbol Panel . 297
Figure 108: Known Symbol - Sample Styles . 298
Figure 109: Feature Numberer - Marker Panel . 299
Figure 110: Feature Numberer - Numbering Panel . 300
Figure 111: HTML Report - Global Report Panel . 301
Figure 112: HTML Report - Feature Fragment Panel . 302
Figure 113: HTML Report- Header Result . 304
Figure 114: HTML Report- Footer Result . 305
Figure 115: Variable Markers - Marker Panel . 306
Figure 116: Variable Markers - Sample Style . 308
Figure 117: Patterner - Pattern Panel . 309
Figure 118: Symbol Roller - Symbol List . 310
Figure 119: Symbol Roller - Entry Editor . 311
Figure 120: The Color Chooser - Swatches Panel . 312
Figure 121: The Color Chooser - HSB Panel . 313
Figure 122: The Color Chooser - RGB Panel . 314
Figure 123: The Color Chooser - Opacity Panel . 315
Figure 124: The Font Selector . 316
Figure 125: Internal Data Model versus Exposed Feature Types 400
Figure 126: GML Schema Structure . 402
Figure 127: WFS Configuration . 404
Figure 128: WFS Mapping. 408
Figure 129: Road-Lane UML Diagram . 417
Figure 130: Road-Lane Relational Diagram . 417
Figure 131: Parcel-Person UML Diagram . 423
Figure 132: Parcel-Person Relational Diagram . 424
Figure 133: Brussels Orthophotoplan . 459
Figure 134: A Set of Images on Brussels . 460
Figure 135: Example of a Data Model Organization . 463
Figure 136: Bil Bands . 464

xviii List of Figures

Figure 137: BIL Layout . 467
Figure 138: World File . 468
Figure 139: Raster CS Type . 470
Figure 140: Tiles order in Landsat hdf4 dataset . 476
Figure 141: WCS Process Chain . 482
Figure 142: Very Large Coverage Processing . 483
Figure 143: WCS/CPS processing/rendering chain . 485
Figure 144: Without rendering control . 486
Figure 145: With rendering control . 486
Figure 146: Very Large Image Management process . 487

Configuration Overview 1

Configuration Overview
This chapter gives an overall view of the configuration in the ERDAS
APOLLO Server components.

The Services
Framework
Architecture

The Services Framework Architecture shows how data is manipulated
through the application programming interface (API). There are three
layers:

• The Open GIS Interfaces

• ERDAS Engine

• Data Connectors

In addition, there are the configuration files that are accessed by the
Data Connectors layer.

Figure 1: Services Framework Architecture

The Open GIS Interfaces layer interacts with the client applications and
services. At this level, user requests are translated into internal
statements and the results are converted into documents or images.

2 Configuration Overview

The middle layer, the ERDAS Engine, is the processing layer that
contains the ERDAS servlets. ERDAS servlets perform a variety of
functions, such as data conversions, calculations and map projections.
The servlet's behavior can be fine tuned by modifying a set of
configuration files.

The Data Connections layer is the lowest layer. It connects the data
server or source to the servlets. It uses the configuration files that
provide information permitting access to the data and making the data
connectors visible as services.

Framework Components The components of the framework are:

• Scalable J2EE Components: The J2EE container or Web
application server that manages the service, e.g., Tomcat, JBoss
and WebLogic

• ERDAS Servlets

• Connectors and Providers: Data accessed via the servlets, i.e.,
Oracle 9i/10g/11g, PostgreSQL/PostGIS, Shapefiles and Map,
Coverage or DEM Sources

• Databases, Flat Files and Imagery: Data connectors - a type of
"plug-in" that understands database files accessed through WFS as
well as imagery sources published as WMS, WCS or WTS

• Configuration Files: Setting up the services

Scalable J2EE
Component

The ERDAS APOLLO Server components are completely written in
Java and use several configuration files allowing easy and rapid
configuration. These services are highly scalable and the fully reentrant
J2EE components can manage as many threads as these services
request. This permits the container to manage the threads with no risk
of interference.

ERDAS Servlets The ERDAS Servlets are middleware that provide the processing
necessary to perform a number of functions within the application.
These functions are data management and conversion and map
projections.

Connectors and
Providers

Each service connects to a data source - imagery, database or other.
The data source connection is optimized through a specific connector
that manages the mapping from the Web Service to the data. A
connector that is configured to accomplish the task of mapping is called
a "provider".

Configuration Overview 3

Databases, Flat Files,
and Imagery

The database can be an SQL database engine, another geo-engine, a
data file, a raster image or a coverage. It is possible to have multiple
Web Services accessing the same data. Each type of data source is
configured with a specific connector having its own parameters that
best matches the internal connector model with the web service's one.

Beyond the connectors predefined in the product, it is possible to
develop new connectors. ERDAS APOLLO Solution Toolkit product,
usable on top of ERDAS APOLLO Server, provides a "Simple
Framework" API in order to plug a map connector into the WFS servlet.
It is primarily intended to make it easy to implement a connector over
flat files. It also allows to develop custom coverage data decoders and
custom coverage metadata decoders.

Configuration Files The ERDAS Web Services configuration files are used to control the
type of services, connection pools, or operating system resources.
These are also used to define the global behavior of the system. Most
of the configuration modules rely on XML files as this format is widely
used by software vendors and fully managed utilizing Java.

Basic
Configuration

ERDAS servlets are middleware that must be configured to a specific
environment. Each user environment differs; they will connect to unique
data sources and may have different Web Application Servers.
Additionally, methods and requirements for displaying geoinformation
vary from installation to installation. Even though the configuration of
ERDAS products may result in unique profiles for each environment,
the procedure to configure services is the same.

Regardless of the servlet type, configuration for ERDAS APOLLO
Server components consists of four basic levels:

• Servlet Engine Configuration

• Actual Servlet Level Configuration

• Data Level Configuration

• Geographic Information - Transactional Configuration

Table 1: Base Configuration Levels

WMS WFS WCS

Servlet
Engine Level

web.xml web.xml web.xml

4 Configuration Overview

Servlet Engine
Configuration

A servlet exists in the context of a Web Application, defined in a single
XML file called web.xml. Configuration at the Servlet Engine level
consists of configuring the content of this web.xml file. This file is
located in the WEB-INF subdirectory of the Web Application and
provides the primary configuration information such as the name and
location of the configuration files for each servlet. So, for the ERDAS
APOLLO Server installation, web.xml files can be found in the WEB-INF
directory of each of the ERDAS WAR files, i.e. erdas-apollo.war or
apollo-client.war.

For more information about the web.xml file including specific steps for
set up, please refer to Administration of ERDAS APOLLO in this
guide.

Actual Servlet Level
Configuration

All of ERDAS's servlets are configurable according to the desired
functionality. The majority of the configuration steps are at this level.
Most of ERDAS's servlets use a factory file, called providers.fac
which defines the link to data sources and servlet properties. These
providers.fac files are located in the installation directory, under
config/erdas-apollo/providers/<service_type>, where
<service_type> can be map, coverage, vector, or catalog. It serves
two functions:

• To administer the servlets

• To set up access to data sources

The methodology and step-by-step definition of content in the
providers.fac file is detailed in Service Configuration.

Servlet Level Providers.fac, World File Providers.fac, Feature
Mapping and Schema

Providers.fac, index

Data Level Format, Size RDBMS, JDBC, index Format, Size

GI/Transacti
onal Level

SRS SRS, Portrayal, Transactional SRS, Portrayal

Additional
Configuratio
n

Metadata, Dimension/Filter,
LegendURL, Copyright,
Performance tuning, GML
output

Metadata, Dimension/Filter,
LegendURL, Copyright,
Performance tuning, GML
output

Metadata, Performance
tuning, Coverage output

Table 1: Base Configuration Levels (Continued)

WMS WFS WCS

Configuration Overview 5

In some cases, such as the WFS, additional steps need to be
performed. Additional steps may include defining feature types and
matching of these features types with a data structure. Feature types
are defined in a XML Schema file and matching this schema with the
corresponding data structure is done in a XML "Mapping" file. They are
both referenced in the providers.fac file. There are several different
types of mapping that are available depending on the nature of the data.
The main options available are:

• SQL Mapping for data directly mapped to feature types

• Explicit Mapping for assigning names to feature types different from
data

• Automatic Mapping for data model built from feature types definition

Reference Feature Mapping Tags for mapping different data types.

Data Level Configuration Once the servlets are configured, the data will need to be formatted and
named to make them accessible by the services. ERDAS APOLLO
provides several methods for preparing data sources for use with the
servlets. Depending on the type of data and the servlet type, i.e. WMS,
WFS or WCS, the following can be configured:

• For Map data in a WMS: Data Format and Size.

• For Feature data in a WFS: Database Connection and Tuning, (e.g.
JDBC, RDBMS, index files).

• For Coverage data in a WCS: Data Format, Size and Organization.
(Possibly indexed by a WFS or a Catalog).

This level of configuration takes place within the data files themselves.
Please refer to Typical Scenarios and Provider Types for additional
details and exact steps for each data type.

Geographic Information
and Transactional
Configuration

The Geographic Information (GI) and Transaction Configuration level
insures that geodata served by ERDAS components are
comprehensible to users. This may mean that all data must adhere to
certain GI characteristics, such as spatial reference systems and
bounding box extents. For feature data, the look and feel of the data can
be configured by defining portrayal rules and styles. This configuration
takes place at the level of the servlet through an additional parameter
given in the providers.fac file. Refer to Portrayal Capabilitiesfor further
information on the steps to take.

6 Configuration Overview

Data accessed by the WFS may also be transactional. This means that
the data can be altered in the database through insert, update and
delete statements. The WFS can become transactional by defining
additional settings in the "Mapping" XML file. Please refer to the chapter
Typical Scenarios on page 21 and the chapter Advanced
Configuration on page 183 for additional details on transactional
services.

Additional
Configuration
Steps

After completing the four basic levels of servlet configuration, the
geodata are ready for publishing on the Web. However, there may be
additional publishing needs and further optimization of data access.

ERDAS APOLLO supports advanced configuration allowing:

• Configuration of ISO-compliant metadata to describe the data for
other users.

• Application of filters in requests to narrow down the data for efficient
analysis purposes.

• Addition of a legend bitmap reference that supports the display of
legend icons on the maps.

• Creation of different types of output, including GML documents and
shape files.

• Fine-tuning of GML output to allow filtering, renaming of elements,
and to hide private data

Refer to the chapter Typical Scenarios on page 21 and the chapter
Advanced Configuration on page 183 for additional details and
detailed steps for the desired configuration.

Service Configuration 7

Service Configuration
This chapter gives a general explanation on how to manually configure
each type of data source. Nevertheless, the simple way to administrate
services and data sources is the ERDAS APOLLO Data Manager, which
is a graphical tool provided in a separate installer along with the ERDAS
APOLLO product (see the "Installing ERDAS APOLLO Data Manager"
section of the Installation and Configuration Guide for more details).

Configuration
Methodology

Configuring a Web Service, i.e., WMS, WFS, WCS, depends on the
type of data and services published. The steps listed below cover
common data types.

For vector data, data is commonly configured to be presented as
features.:

• Define an XML schema definition of the feature types to expose.
(See GML Application Schema and Mapping to Databases on
page 399.)

• Establish the feature types relational mapping to the datastore,
often a SQL mapping (See Configuration Overview on page 1.)

• For each service, indicate the connectors to be used in the
providers file (see the following sections for instructions for each
type of data source).

For raster and coverage data, the data must be configured, i.e., world
file, colors, format, and declared.

• Put the image or coverage files in a set of directories accessible to
the servlet.

• Create and put the corresponding World and/or Metadata files in
that same directory.

• For each service, indicate the connectors to be used in the
providers file (see the following sections for instructions for each
type of imagery data)

For any other type of data (proxy, pyramid, specific), the entry in the
providers file is the only mandatory step. The other actions are
dependent on the type of connector used.

Presenting vector data as maps requires an additional step - portrayal.

8 Service Configuration

Once the configuration tasks are completed, the servlet is automatically
restarted to expose the newly created service.

To check if new providers are well defined and visible, call the servlet
with the parameters request=debug&cmd=getlist, through a URL that
will look like: http://myhost:80/erdas-
apollo/vector/debug?request=debug&cmd=getlist. If the new
provider is well defined, its ID will appear in the list.

To check if the data are correctly published, request an OGC
capabilities from the service and check that the returned capabilities
document is as expected. In the case of a WFS, calling the
"DescribeFeatureType" checks the feature type mapping. An example
would be: http://myhost:80/erdas-
apollo/vector/ATLANTA_VECTOR?version=1.0.0&service=WFS&r
equest=DescribeFeatureType&typename=roads.

Data services An ERDAS Web service, i.e., WFS, WMS, WCS is configured through
a main factory file named providers.fac used by the associated servlet
(see Servlet-Specific Configuration Parameters (providers fac)).
This XML configuration file is composed of:

• A global configuration section used to configure the framework
behavior utilizing the <CONFIGURATION> tag.

• Several WMS/WFS/WCS configuration sections, one per defined
service, utilizing multiple <CREATE> tags.

Provider Concepts A provider describes an instance of a connector. A connector is a Java
class that plugs into the servlets to make a link with one type of data
such as a large raster image or a shapefile. Multiple instances of a
connector can be defined if there are multiple data sources such as
multiple images or shapefiles. Each instance is a provider and creates
a running Web Service. A section of the "providers.fac" is called
<CREATE> and sets how the instance of a given service is linked to a
connector and how the data store is accessed.

Service Configuration 9

Figure 2: Providers.fac Content

A provider has the following characteristics:

• One Web Service, WMS, WFS, WCS, etc. is associated with one
and only one provider.

• One provider is an instance of a connector.

• One configured connector is a provider.

• One provider is configured in the providers.fac by one tag
<CREATE>.

Configuring a Provider

This section describes in detail the physical definition of a provider.
Most of the time, it is not necessary to create or edit them manually
as the ERDAS APOLLO Data Manager is designed to allow all
types of service configurations needed.

The <CREATE> element

The <CREATE> element is used to configure a provider and contains
two attributes:

• The ID that uniquely identifies each provider in a framework and

10 Service Configuration

• The JCLASS that indicates the kind of provider class used to
connect to the data source.

Each service to be managed is defined and has an associated ID which
is referenced by client-side components. This ID will give the name of
the service. For example, if the ID is "ATLANTA", then the service could
be: "http://www.mysite.com/erdas-apollo/vector/ATLANTA?".

JCLASS indicates the name of the connector's Java class that will be
used for this Web service. A list of all the possible connectors is
provided in Provider Types on page 344.

The <PARAM> and <PARAMBLOCK> elements

Each provider is defined by a CREATE element. The Create element
has parameters defined in the PARAM and PARAMBLOCK elements.
The PARAM and PARAMBLOCK elements have a number of possible
names and values. Each provider has a specific set of mandatory and
optional PARAM and PARAMBLOCK elements. A "PARAM" element
has two attributes: "NAME" and "VALUE", i.e., <PARAM NAME="title"
VALUE="Erdas WFS server on ATLANTA"/>. A "PARAMBLOCK"
element has only the "NAME" attribute" which maybe optional and
embeds one or more <PARAM> and <PARAMBLOCK> sub-elements.
The tables in Appendix "Detailed Parameters of a Provider" lists the set
of supported PARAM and PARAMBLOCK elements for each type of
service.

Not all parameters apply to each type of provider. Some are mandatory
and others are optional.

Please refer to Detailed Parameters of a Provider on page 327 for the
complete list of parameters, and to Provider Types on page 344 for the
set of parameters applicable for each type of provider.

URL parameters behavior:

• Relative URLs are relative to the URL of the factory file
(providers.fac)

• Object URLs (obj:) are relative to the resource directory of the
servlet (i.e., com.ionicsoft.wfs.server.resource for WFS)

• Resource URLs (res:) are relative to the CLASSPATH (i.e.,
res:///com/erdas/sref/impl/resource/factorysref.xml)

• Others are absolute URLs

Service Configuration 11

Steps to configure a
Provider

Always use the ERDAS APOLLO Data Manager to configure a new
service provider. Refer to the online help for detailed instructions.

Sample providers.fac
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE FACTORY SYSTEM "factory.dtd" >
<FACTORY>
 ...
 <CREATE ID="ATLANTA_ORA"
 JCLASS="com.erdas.wfs.provider.oracle.OracleProvider">
 <PARAM NAME="title" VALUE="Erdas WFS server on ATLANTA"/>
 <PARAM NAME="connect"
 VALUE="oracle://myhost/user+foo/password+bar/SID+ATLANTA"/>
 <PARAM NAME="types" VALUE="obj:///atlanta_ora.xsd" />
 <PARAM NAME="mapping" VALUE="obj:///atlanta_ora.xml" />
 </CREATE>

 <CREATE ID="ATLANTA_SHAPE"
 JCLASS="com.erdas.wfs.provider.shapev2.ShapeProvider">
 <PARAM NAME="title" VALUE="Erdas WFS over ATLANTA SHAPE
Files"/>
 <PARAM NAME="path" VALUE="D:/Erdas/data/shapes/atlanta" />
 <PARAM NAME="types" VALUE="obj:///atlanta_shape.xsd" />
 <PARAM NAME="mapping" VALUE="obj:///atlanta_shape.xml" />
 </CREATE>

 <CONFIGURATION>
 //if framework configuration is also in the same file, it
comes here
 ...
 </CONFIGURATION>

</FACTORY>

How to Control the
Provider Configuration

If there is a syntax error in the providers.fac file, either the service will
not start or one or more providers will not be accessible. Invoking the
service "debug" pseudo-provider or one of the newly defined provider
IDs will provide a direct answer on syntax correctness. Example:
http://myhost:80/erdas-
apollo/vector/debug?request=debug&cmd=getlist.

Another way to check the syntax of the providers.fac is to use an XML
validation tool along with the factory.dtd definition file that defines the
allowed tags.

12 Service Configuration

If there is a mistake in the definition of a provider, the effect will vary
depending on the mistaken attribute or parameter. As a control, if the
service agrees to deliver the provider capabilities document, the
information included will give details about the erroneous declarations.
If a capabilities document is successfully returned, send a GetMap or a
GetFeature request because it will invoke the data server and return
maps or data. Even though GetCapabilities, DescribeFeatureType
(WFS only) and DescribeCoverage (WCS only) cause the instantiation
of the provider and the connection to the data server, they do not send
data requests.

Catalog service

Deployment and
Administration of the
Server

After the ERDAS APOLLO installation process completes successfully,
the APOLLO Catalog will be part of the installed web applications.

It is still possible to change the configuration of your APOLLO Catalog
afterward. You can easily change the configuration of the used data
source (the database), the security definition, or the logging
mechanism. The next sections contain the information for doing this.

Environment
Configuration

The APOLLO Web Client is part of the global erdas-apollo.ear
application that was installed in your application server as a result of the
install procedure. The apollo-catalog is mainly parameterized using a
single file, erdas-apollo.ear/conf/hibernate.properties.

A build of the application will replace the tokens located in that file with
what was provided during the installation. Those values are stored in
the build.properties which customizes how the build operates. This
section mainly discusses how to change some of the tokens without
reinstalling the product.

The hibernate.properties file contains the following kinds of
configuration:

• Database Configuration

• Search Configuration

• Security Configuration

Database-Related Variables

Database-related variables allow you to change the database that the
catalog connects to; it can also be used to switch from one RDBMS to
another if necessary. The following keys can be changed in the
build.properties file:

Service Configuration 13

• hibernate.dialect defines the database dialect to use. You do
not need to change this unless you want to switch from one RDBMS
to another. For Oracle, the value is
com.erdas.rsp.hibernate.oracle.OracleDialect and for PostgreSQL
the value is com.erdas.rsp.hibernate.postgis.PostgisDialect.

• hibernate.connection.datasource defines the J2EE data
source used by the catalog. See the description of apollo-ds.xml
below.

• The data source and related database connection parameters are
defined in the apollo-ds.xml file, located in at the root of your
application server deployment directory.

Search-Related Variables

It is possible to change the storage policy of the indexes used to
perform free text searches. This is an advanced use case and ERDAS
recommends that you check the official Hibernate documentation first.

The following properties can be changed directly in the erdas-
apollo.ear/conf/hibernate.properties file:

• hibernate.search.default.directory_provider defines the
directory provider managing the index information storage.

• hibernate.search.default.indexBase defines the base path
where the indexes are stored.

Depending on the provider type used, other variables could be
affected or used. Those are explained in the official documentation.

Security-Related Variables

The security is largely explained below, see Security Configuration.

By default, the configuration of the default permissions is defined by the
file erdas-apollo.ear/erdas-apollo.war/WEB-
INF/classes/default-permissions-config.xml. If you want to
configure the application so that another configuration file is used
instead, you must update the default-permissions-config.xml
property in the hibernate.properties file.

http://www.hibernate.org/hib_docs/search/reference/en/html/search-configuration.html#search-configuration-directory

14 Service Configuration

Database Schema
Management

The ERDAS APOLLO installation process can automatically generate
the required schema for using the ERDAS APOLLO Catalog if you
specify during the installation that it should do this. If you have an
existing database, you should create a backup before you install a new
version of ERDAS APOLLO.

The schema generation script can be invoked on the command line in
order to recreate a fresh schema, to update an existing schema, or if
apollo-catalog has been configured to use another database or
schema.

The generator is located in the tools/schema-generator directory of
the ERDAS APOLLO installation. By default, the build.properties
contains the database credentials that have been entered at installation
time. If a fresh schema needs to be created on another database or
schema, you will have to update this file. See Database-Related
Variables for more details.

The management of the schema is handled by an Apache Ant build
script which provides the following operations:

• upgrade (default): upgrades the schema if necessary. If the schema
is empty, the necessary tables are created.

• drop: removes the apollo-catalog tables and their contents.

• recreate: is a shortcut that performs the drop operation followed by
the create operation.

Make sure to back up your data prior to any upgrade operation.

Any schema management operation will log everything in the schema-
upgrade.log file located in the same directory.

Security Configuration To implement the security requirements of the application, the open
source framework Spring Security is used.

The configuration of security is mainly in the erdas-
apollo.ear/erdas-apollo.war/WEB-INF/config/security-
config.xml file. This file defines the basic components of the security
of the system. The overall security of the catalog can be set up at
different levels:

• Authorizing which methods can be invoked (Method Level
Security).

• Authorizing access to individual domain object instances (Object
Level Security).

http://static.springsource.org/spring-security/site/index.html

Service Configuration 15

• Authorizing web requests (HTTP Authentication).

Configurations relevant to all of the levels are explained below with
examples.

Method-Level Security

Method-based security lets you secure a method which can be
executed by only those users who have been granted a particular
security role. Different methods of the service bean are configured to be
secured. Only certain roles are allowed to execute those methods. This
is configured using the method security interceptor.

Method security is enforced using this MethodSecurityInterceptor,
which secures MethodInvocations. Depending on the configuration
approach, an interceptor may be specific to a single bean or shared
between multiple beans. The interceptor uses a
MethodDefinitionSource instance to obtain the configuration attributes
that apply to a particular method invocation. It is configured in the
security-config.xmlfile.

<bean id="theMethodSecurityInterceptor"

class="org.springframework.security.intercept.method.aopallianc
e.MethodSecurityInterceptor">
 <property name="authenticationManager"
ref="authenticationManager" />
 <property name="accessDecisionManager"
ref="accessDecisionManager" />
 <property name="objectDefinitionSource">
 <value>

com.erdas.rsp.babel.service.persistence.PersistenceService.find
*=IS_AUTHENTICATED_ANONYMOUSLY

com.erdas.rsp.babel.service.persistence.PersistenceService.coun
t*=IS_AUTHENTICATED_ANONYMOUSLY

com.erdas.rsp.babel.service.persistence.PersistenceService.pers
ist*=BABEL_PUBLISHER,BABEL_ADMIN

com.erdas.rsp.babel.service.persistence.PersistenceService.dele
te*=BABEL_PUBLISHER,BABEL_ADMIN

com.erdas.rsp.babel.service.persistence.PersistenceService.upda
te*=BABEL_PUBLISHER,BABEL_ADMIN
</value>
</property>
</bean>

16 Service Configuration

Object Level Security

Object Level security is used to secure a resource by restricting access
to only those users who have been granted a particular security role.

This is achieved by securing the domain objects. Domain objects are
persisted along with the permissions associated with them. When the
object is accessed using a service, the current user's identity and roles
are checked and if the principal has READ permission set on the
domain object, then the object is returned in the service response.

Generally when a domain object is persisted, either it is persisted with
a specific set of permissions or it is persisted with the default
permissions. Those default permissions are defined in the default-
permissions-config.xml file located in the erdas-
apollo.ear/erdas-apollo.war/WEB-INF/classes directory of the
apollo-catalog source web application.

This file defines a set of policy and the policy that is active for the whole
instance. For instance, if you want to grant all rights to the user who
created an object and READ permissions to anyone, you would
configure it like this:

<Security xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="default-permissions-
config.xsd">

 <!-- Defines the policy in use -->
 <ActivePolicy name="user"/>

 <Policy name="user">
 <Default>
 <CurrentUser rights="RUD+-"/>
 <Anyone rights="R"/>
 </Default>
 </Policy>
</Security>

The syntax of the security file is fairly simple. The active policy must be
named as follows:

<ActivePolicy name="policy2" />

Each policy must be defined. Its definition basically contains a name
and a default section that defines the rights that you want to associate
to an object created in the system.

<Policy name="policy2">
 <Default>

Service Configuration 17

 <CurrentUser rights="RUD" />
 <CurrentRoles rights="RU" />
 <Role name="role1" rights="RUD" />
 <Default>
</Policy>

The rights are simply defined by a letter where R means Read, D means
Delete, U means Update,+ means Grant Right, and - means Revoke
Right.

HTTP Authentication

HTTP authentication and authorization is provided through the use of a
web filter, an AuthenticationProvider, and an AuthenticationEntryPoint.
The configuration of the web filter, AuthenticationProvider, and
AuthenticationEntryPoint are as follows:

• In the web.xml file, this application will need a single Spring
Security filter in order to use the FilterChainProxy.

<filter>
 <filter-name>filterChainProxy</filter-name>
 <filter-class>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>filterChainProxy</filter-name>
 <url-pattern>/catalog/*</url-pattern>
</filter-mapping>

The above declarations will cause every web request to be passed
through to the bean called filterChainProxy which will usually be an
instance of Spring Security's FilterChainProxy.

• The FilterChainProxy enables web requests to be passed to
different filters based on URL patterns. Those delegated filters are
managed inside the application context, so they can benefit from
dependency injection. The FilterChainProxy bean definition
(located in the security-base-config.xml file) looks like the following
inside our application context:

<bean id="filterChainProxy"

class="org.springframework.security.util.FilterChainProxy">
 <security:filter-chain-map path-type="ant">
 <security:filter-chain
 pattern="/**"

filters="httpSessionContextIntegrationFilter,logoutFilter,

18 Service Configuration

authenticationProcessingFilter,securityContextHolderAwareReques
tFilter,

anonymousProcessingFilter,basicProcessingFilter,filterInvocatio
nInterceptor"/>
 </security:filter-chain-map>
</bean>

The property filter-chain-map allows us to define the mapping from
URLs to filter chains, using an instance of filter-chain containing an
ordered list of filters. It is important to note at this stage that a series of
filters will be run - in the order specified by the declaration - and each of
those filters is actually the ID of another bean in the application context.
So, in our case all the beans that are declared under filterChainProxy
will also appear in the application context, and they will be named
httpSessionContextIntegrationFilter, logoutFilter, and so on.

Logging Configuration Logging into ERDAS APOLLO is ensured by Log4j, a Java-based
logging utility of the Apache Software Foundation. Log4j offers six
standard logging levels. From highest (coarsest) to lowest (finest),
those levels are:

• FATAL: production, fatal application error, application cannot
continue. Could be caused if the database is down, for example.

• ERROR: production, application error/exception but application can
continue. Part of the application is probably not working.

• WARN: production, simple application error or unexpected
behavior. Application can continue. Can be used in case of bad
login attempts or unexpected data during import jobs, for example.

• INFO: production optionally. Can be used to print that a
configuration is initialized or that a long running import job is starting
and ending, for example.

• DEBUG: development only, for debugging purpose.

• TRACE: development only, can be used to follow the program
execution.

The ERDAS APOLLO Catalog uses these different levels of logging to
provide feedback on activity. Logging configuration is defined in the
WEB-INF/classes/log4j.properties file of your ERDAS APOLLO
Catalog web application. In JBoss, this configuration may be overridden
by the global jboss-log4j.xml file located in the jboss /conf directory.
This file allows you to define the following.

• Appenders: control how the logging is output.

Service Configuration 19

• Layout, associated to appenders: control how to format the output.

• Loggers: responsible for handling the majority of log operations.

See this file for any additional information.

20 Service Configuration

Typical Scenarios 21

Typical Scenarios
This chapter provides some common scenarios for setting up web
services for geodata. The examples rely on sample data used in real-
world situations.

The first four sections of this chapter are a step-by-step guide for
configuring web services over data. The following sections will optimize
and enhance the web services.

Publishing Vector
Data in WFS

This section describes the steps to set up a web service over vector
data. At the end of the sequence, the service will be able to respond to
WFS requests (GetCapabilities, DescribeFeatureType, GetFeature)
and to display maps through WMS requests (GetCapabilities, GetMap,
GetFeatureInfo).

Shapefile Provider on top
of a Data Directory

This section provides an example on how to create a shapefile provider
on top of a data directory based on the sample data over the city of
Atlanta installed with the product (if you chose that option).

C:/Erdas/Apollo2011/data/erdas-apollo/shapes/atlanta

1. In the first dialog, create a new vector service in the Data Manager,
choose Service Type as the vector data and Data Source Type as the
file.

2. In the Shape File Selection panel, select the first radio button Data
located on the server.

3. In the second dialog, choose Shape Service as the Service Type.

4. In the Shape File Selection panel, choose the directory containing the
sample Shapefiles on Atlanta: click Browse and navigate to
data/erdas-apollo/shapes/atlanta".

5. In the Shape File SRS field, select "NAD83/Georgia West State Plane
(ftUS)" or encode "EPSG:2240".

6. In the Basic Service Properties panel, enter the following values:
Name: ATLCITY
Title: City of Atlanta
Abstract: City of Atlanta, Shapefile Service setup using ERDAS
APOLLO
Keywords: Altanta,Buildings

22 Typical Scenarios

7. In the Additional Service Properties panel, choose the Autodetect
geometry types option. Keep the other fields as proposed.

The Index data option is selected by default. It creates RTree files
beside the shapefiles for optimized access. This operation can take
several minutes before completing. This action can be disabled and
taken later.

8. After the creation is over, in the Edit panel, click GetCapabilities to
check that the service is properly initialized. An XML document appears
and declares a set of feature types: buildings, futurelanduse, roads,
places.

Next Steps:

• When a WFS service is defined, it can be opened in the Apollo Web
Client and the layers can be presented as WFS Layers.

• Adding Metadata to a WFS service allows you to publish richer
information.

• Creating styles on vector data allows you to expose it as WMS
layers. See Create Styles on Vector Data below for guidance.

In the Style Editor, you will notice that the futurelanduse and places do
not overlay the other layers (because the overlay has mismatched SRS
code and extent values). It is most visible when right-clicking on those
layers and as "Frame the view to the layer". The "Envelope" pane
confirms that the coordinates for those layers are not in the Georgia
West State Plane but in WGS 84.

To fix this, update the configuration of the provider to indicate that the
places and futurelanduse feature types use the EPSG:4326 (WGS84)
coordinate system.

1. In the Data Manager edit the provider using the online help.

2. Click on the ATLCITY provider you defined before.

3. In the Resources tab of the Edit view, click on the Resource named
generatedMapping.xml and click Edit.

4. Go to the <Info> section for the two impacted feature types.

5. Change the EPSG code for the SRS and BoundingBox properties, from
EPSG:2240 to EPSG:4326. Save the file.

6. In the Service Info tab, click on Restart Service for the changes to be
applied. Restart the Style Editor and check the extents again.

Typical Scenarios 23

When complete, save your project into
C:/Erdas/Apollo/tools/styleeditor/projects

Create a Vector Provider
on top of Oracle Data

This section provides an example of how to create a vector provider on
top of Oracle data based on the sample data over the city of Boston,
installed with the product (if you chose that option).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to deploy a WFS on top of Oracle data:

1. If the data is not yet in an Oracle database, take the sample file
<APOLLO_HOME>/data/erdas-apollo/db/oracle/boston_ora9.dmp
and import it in the Oracle9i Spatial or higher database. The command
could look like: imp user/pwd@sid File=boston_ora9.dmp GRANTS=N
FULL=Y

Data provided in the Shapefile format can be imported using the
Oracle shp2sdo tool.

2. Whatever the data, this step is complete when an Oracle schema is
filled with a set of tables, its rows, indexes and possible constraints,
views,... .

3. Launch the Data Manager and follow the instructions.

4. In the first dialog, choose Vector Data as the Service type and
Database as the Data source type.

5. Choose Oracle as the Service type.

6. In the Connection panel, fill the fields (most of the time, host, port, sid,
user and password suffice). Click Test Connection to verify that the
connection to the database succeeds.

7. In the Default SRS field, encode the value "EPSG:26986" (it
corresponds to Massachusetts State Plane in Meter).

8. In the Basic Service Properties panel, encode the following values:
Name: BOSTON_ORA
Title: City of Boston
Abstract: City of Boston, Oracle Service setup using ERDAS
APOLLO
Keywords: Boston, Oracle

24 Typical Scenarios

Check Generate types and mappings before clicking Finish.
The service is created and the Service Provider Editor view shows the
properties of the new service.

9. But a set of mapping and types files are needed for the WFS to be
properly configured. Choose the Data Source tab. Beside the Mapping
File field click Browse. Select config/erdas-
apollo/providers/vector/boston_ora.xml. Then select the Types
Schema field, click Browse. Select config/erdas-
apollo/providers/vector/boston_ora.xsd.

10. Click Save to persist the changes.

11. Click GetCapabilities to check that the service is properly initialized.
An XML document displays and declares a set of feature types:
highways, hydro, land_use, place_names, protectedareas, roads.

If additional Metadata are needed per layer, the mapping file
(generatedMapping.xml) should be edited to add such tags in each
<Info> section. Such an addition could look like:

<wfs:Title>Protected Areas</wfs:Title>

<wfs:Abstract>Polygons of Boston Protected Areas</

wfs:Abstract>

<wfs:Keywords>Boston,Protected,Areas</wfs:Keywords>

Next Steps:

• When a WFS service is defined, it can be opened in the ERDAS
APOLLO Web Client and the layers can be presented as WFS
Layers.

• Adding Metadata to a WFS service allows you to publish richer
information.

• Creating styles on vector data exposes it as WMS layers. See
Create Styles on Vector Data below for guidance.

Create a Transactional
Provider over Oracle

This section explains how to convert a vector Oracle Provider (WFS
interface) onto a transactional service supporting updates of the data.
The main path updates the BOSTON_ORA provider defined previously
but a set of Notes describe alternatives if a custom data source is used
instead.

Typical Scenarios 25

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to define a WFS-T based on an existing WFS over Oracle data:

1. Add the BUSINESS and LOCKTIMEOUT tables to the Oracle schema.
To do this, execute successively the SQL script files
<APOLLO_HOME>/data/erdas-apollo/db/oracle/bus_create.sql
and lock.sql. The first one creates the BUSINESS table, the
associated indexes and insert a small set of records in that table. The
second script creates the LOCKTIMEOUT table used to manage the
Locking mechanism.

In the alternative of a custom service, we assume one or more of
the existing tables will be made transactional. At this stage, you
need to check or adapt the table(s) so that one or more columns
identifies each row uniquely (whether or not it is configured as a
primary key). Moreover, if you want to enable the Locking
mechanism, an additional character-type column should be added.
The SQL statement could be: ALTER TABLE BUSINESS ADD
(LOCK_ID VARCHAR2(255 BYTE));

2. Launch the Data Manager follow the online help to edit an existing
service provider.

3. Select the previously created "BOSTON_ORA" vector service. Display
the properties of this service in the Service Provider Editor View.

4. Adapt the content of the mapping file. To do so, select the Data Source
tab and click Edit beside the Mapping FIle field.

If the file relates to BOSTON_ORA, uncomment the Mapping and Info
sections referencing BUSINESS at the bottom of the file. If converting
a custom table to make it transactional, the following changes are
needed:

• If the primary key setting is set to <NoPrimary/>, replace that line
with an actual Primary Key definition. If the primary key column is
named "BUS_ID", it could be: <Primary name="BUS_ID"
type="xsd:integer" fid="generated" />

The fid="generated" option is set to ensure uniqueness of the keys:
each time a record is inserted, the system will generate the key value.

• If Locking is enabled, add the following line to declare the
"LOCK_ID" column as locking flag key: <Lock
nameSQL="LOCK_ID" />

26 Typical Scenarios

• Ideally, the BUS_ID and LOCK_ID columns should not be mapped
to a feature property. To achieve this, remove the lines (if they were
ever created):

<Element name="wfs:BUS_ID" nameSQL="BUS_ID"/>

<Element name="wfs:LOCK_ID" nameSQL="LOCK_ID"/>

• In the <Info> tag for your table, only the Query operation is enabled.
It should be extended to enable transactional-type operations. To
do so, add one or more of the following operation types in a comma-
separated list: Insert, Update, Delete, Lock. Alternatively, replacing
the whole set with just the "*" value enables all operation types.

The end of the mapping file for BOSTON_ORA could look like this:

 <Mapping>
 <SQL name="wfs:BUSINESS">
 <Table nameSQL="BUSINESS"/>
 <Primary name="BUS_ID" type="xsd:integer" fid="generated"
/>
 <Lock nameSQL="LOCK_ID" />
 <Element name="wfs:NAME" nameSQL="NAME"/>
 <Element name="wfs:TYPE" nameSQL="TYPE"/>
 <Element name="wfs:STREET_NAME" nameSQL="STREET_NAME"/>
 <Element name="wfs:BUILDING_NBR" nameSQL="BUILDING_NBR"/>
 <Element name="wfs:POSTCODE" nameSQL="POSTCODE"/>
 <Element name="wfs:CITY" nameSQL="CITY"/>
 <Element name="wfs:TELEPHONE" nameSQL="TELEPHONE"/>
 <Element name="wfs:TOTAL_EMPLOYEES"
nameSQL="TOTAL_EMPLOYEES"/>
 <Element name="wfs:GEOMETRY" nameSQL="GEOMETRY"/>
 </SQL>
 </Mapping>
 <!--Info for type wfs:BUSINESS - to enable when table is created
-->
 <Info name="wfs:BUSINESS">
 <Operations>*</Operations>
 <SRS>EPSG:26986</SRS>
 <BoundingBox SRS="EPSG:26986" minx="227317." miny="889948."
maxx="238670." maxy="901300."/>
 </Info>

 </xsd:schema>

5. Save the updated mapping file.

6. Synchronize the content of the Types Schema file, so that the
transactional table is declared with only the mapped properties
exposed. To do so, select the DataSource tab and click Edit beside the
Types Schema field.

Typical Scenarios 27

If the file relates to BOSTON_ORA, uncomment the xsd:element and
xsd:complexType sections referencing BUSINESS at the bottom of the
file. If converting a custom table to make it transactional, make sure the
primary key (e.g. BUS_ID) and locking property (e.g. LOCK_ID) only
appear in this file if they have been mapped in an <Element> tag in the
mapping file. If not, remove those properties from the feature type
definition. Those lines look like this:

<xsd:element name="BUS_ID" type="xsd:int">
</xsd:element>
<xsd:element name="LOCK_ID" minOccurs="0" nillable="true"
type="xsd:string">
</xsd:element>

7. Save the updated types schema file.

8. Click GetCapabilities to check that the service is properly updated. An
XML document displays. For BOSTON_ORA, that document declares
a new feature type: wfs:BUSINESS.

For BUSINESS and for custom transactional tables, the permitted
operation set appears behind each FeatureType declaration, in a
<Operations> tag. The BUSINESS feature type declaration could look
like:

<FeatureType xmlns:wfs="http://www.ionicsoft.com/wfs">
 <Name>wfs:BUSINESS</Name>
 <SRS>EPSG:26986</SRS>
 <Operations>
 <Query/>
 <Insert/>
 <Delete/>
 <Update/>
 <Lock/>
 </Operations>
 <LatLongBoundingBox minx="-71.16892567638165"
miny="42.25904339835999" maxx="-71.03057571317116"
maxy="42.361722456564976"/>
</FeatureType>

Next Steps:

• Manual checks of transactional behavior can be done with the
Service Tester applet (under http://localhost:8080/erdas-
apollo/servicetester). Sample and template operations are
provided in <APOLLO_HOME>/data/erdas-apollo/db/
oracle/bus_insert.xml and bus_transac.xml.

28 Typical Scenarios

• When a WFS-T service is defined, it can be opened in the ERDAS
APOLLO Web Client as a WFS, and the layers can be managed as
WFS Layers: When information is requested on a feature, that
information holds links to allow edition, creation, or deletion of
features.

Create a
PostgreSQL/PostGIS
Vector Provider

This section provides an example on how to create a
PostgreSQL/PostGIS vector provider, based on the sample data over
the city of Boston, installed with the product (if you chose that option).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to deploy a WFS on top of PostgreSQL/PostGIS data:

1. If the data is not yet in a PostgreSQL database, you must import it from
shapefiles. Use the command line to generate an sql script file that will
enable you to create the tables and to populate them: shp2pgsql
table.shp schema.table > table.sql. Do this for every table you
want to include in the database.

2. Make the tables and populate them: cat table.sql | psql dbname

NOTE: Note that a PostGIS-enabled PostgreSQL database contains
the tables geometry_columns and spatial_ref_sys in the user schema.

3. Whatever the data, this step is complete when a PostgreSQL/PostGIS
schema is filled with a set of tables, its rows, indexes and possible
constraints, views,... .

4. Launch the Data Manager.

5. In the first panel, choose Vector Data as the service type and choose
Database as the Data Source type. In the second panel, choose
PostgresSQL Service as the service type.

6. In the Connection panel, fill the fields (most of the time, host, port,
database, user and password suffice). Click Test Connection to verify
that the connection to the database succeeds.

7. In the Default SRS field, encode the value "EPSG:26986" (it
corresponds to Massachusetts State Plane in Meter).

8. A set of mapping and types files are needed for the WFS to be properly
configured. Choose the Data Source tab. Beside the Mapping File
field, click Browse. Select config/erdas-
apollo/providers/vector/boston_pg.xml.

Then, select the Types Schema field, click Browse. Select
config/erdas-apollo/providers/vector/boston_pg.xsd.

Typical Scenarios 29

9. Click Save to persist the changes.

10. Click GetCapabilities to check that the service is properly initialized.
An XML document appears that declares a set of feature types:
highways, hydro, land_use, place_names, protectedareas, roads.

If additional Metadata are needed per layer, the mapping file
(generatedMapping.xml) should be edited to add such tags in each
<Info> section. Such an addition could look like:

 <wfs:Title>Protected Areas</wfs:Title>

 <wfs:Abstract>Polygons of Boston Protected
Areas</wfs:Abstract>

 <wfs:Keywords>Boston,Protected,Areas</wfs:Keywords>

Next Steps:

• When a WFS service is defined, it can be opened in the ERDAS
APOLLO Web Client and the layers can be presented as WFS
Layers.

• Adding Metadata to a WFS service allows you to publish richer
information.

• Creating styles on vector data allows to expose it as WMS layers.
See Create Styles on Vector Data for guidance.

• Extending the provider to WFS-T. The procedure is in all details
similar to the Transactional Provider over Oracle. Just make sure to
use <APOLLO_HOME>/data/erdas-apollo/db/
postgresql/bus_create_pg.sql and lock_pg.sql sql scripts
over PostgreSQL, and bus_create_pgis.sql and lock_pg.sql
over PostGIS.

The key generation option fid (Oracle)/gid (Postgres)="auto"
(attribute of the "Primary" property in the mapping file) is not
supported for PostgreSQL/PostGIS as this DBMS does not support
the unique identifier auto-generation option. Oracle does, based on
UUIDs.

30 Typical Scenarios

Create an ArcSDE Vector
Provider

This section explains how to set up a vector Provider (WFS interface)
on an ArcSDE database over the city of Boston. Additionally, each Note
describes alternatives or additional operations if a custom data source
is used instead.

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to deploy a WFS on top of an ArcSDE server:

1. Before configuring the service, add the ArcSDE SDK library to the web
application. This library is composed of a small set of jar files available
in the ArcSDE Java SDK Installation Directory, under the lib folder.
They can be named jsdeXX_sdk.jar, jpeXX_sdk.jar, and possibly
icu4j.jar where XX is the version of ArcSDE.

Copy those jar files into
<APOLLO_HOME>/webapps/erdas-apollo/profiles/eas/WEB-INF/lib
(for APOLLO Essentials) or into
<APOLLO_HOME>/webapps/erdas-apollo/profiles/eaim/lib. Rebuild
the erdas-apollo webapp by running ant from <APOLLO_HOME> as
described in Using Apache Ant to Rebuild the Webapps on page 161
and redeploy them into your servlet engine as described in Deploying
WAR Files on Supported Servlet Engines on page 164.

ArcSDE libraries are not included with ERDAS APOLLO.

2. If the data are not yet stored in a database or not yet configured as a
"feature class" in an ArcSDE server, start by loading it using one of the
methods described in the sample file
<APOLLO_HOME>/data/erdas-apollo/db/arcsde/
bus_create_sde.txt. For this scenario, use the BUSINESS Shapefile
included in that same sample data directory.

Data provided in the Shapefile format can be imported using the
ArcSDE shp2sde tool. The command could be:

shp2sde -o create -l business,geometry -f BUSINESS -a
all -G 26986 -e -p -u <username> [-k ERDAS]

Typical Scenarios 31

Replace "<username> with the real ArcSDE login name. The value
"26986" expresses the projection system. The "-k ERDAS" option
is to be set if the default geometry storage method in the ArcSDE
server does not correspond to the requirements. For example, if
the underlying database is Oracle Spatial and the geometries are
to be stored as Oracle SDO_GEOMETRY type, create a new entry
in the ArcSDE DBTUNE table setting the
"GEOMETRY_STORAGE" property to "SDO_GEOMETRY" and
name it ERDAS. The -k parameter in the command refers to that
name. The alternative methods to populate data are either using
the sdetable and sdelayer commands or creating the SQL table
first and then registering it as a feature class. The commands are
illustrated in the bus_create_sde.txt file and the SQL scripts are
bus_create_ora.sql for ArcSDE/Oracle and
bus_create_mssql.sql for ArcSDE/MS-SQL Server.

3. Whatever the data, this step is complete when an ArcSDE database is
filled with a set of tables, its rows, indexes and possible constraints,
views,... .

4. Launch the Data Manager and follow the instructions to create the
service, setting "BOSTON_SDE" as service name and "City of Boston"
as service Abstract and Title. The wizard creates an incomplete service.
You still must edit the provider properties and encode values.

5. In the Data Source tab, expand the Connect String property and fill
the sub-fields (most of the time, host, port, instance, user and password
suffice). Click Test Connection to verify that the connection to the
database succeeds.

6. A set of mapping and types files are needed for the WFS to be properly
configured. Choose the Data Source tab. Beside the Mapping File
field, click Browse. Select config/erdas-
apollo/providers/vector/bus_sde.xml. Then, select the Types Schema
field, click Browse. Select config/erdas-
apollo/providers/vector/bus_sde.xsd.

7. Click GetCapabilities to check that the service is properly initialized.
An XML document displays and declares a feature type: business.

If additional Metadata are needed per layer, the mapping file
(generatedMapping.xml) should be edited to add such tags in each
<Info> section. Such an addition could look like:

<wfs:Title>Businesses</wfs:Title>

32 Typical Scenarios

 <wfs:Abstract>Points of Boston
Businesses</wfs:Abstract>

 <wfs:Keywords>Boston,Business</wfs:Keywords>

8. Click Save to persist your changes into the actual configuration file.

Next Steps:

• When a WFS service is defined, it can be opened in the ERDAS
APOLLO Web Client and the layers can be presented as WFS
Layers.

• Adding Metadata to a WFS service allows you to publish richer
information.

• Creating styles on vector data allows you to expose it as WMS
layers. See Create Styles on Vector Data for guidance.

• Extending the provider to WFS-T. The procedure is similar to the
Transactional Provider over Oracle. Just make sure to use
<APOLLO_HOME>/data/erdas-apollo/db/oracle/lock.sql sql
script over ArcSDE/Oracle, and
<APOLLO_HOME>/data/erdas-apollo/db/
arcsde/lock_mssql.sql over ArcSDE/MS-SQL.

More guidance on setting up an ArcSDE vector data source is given in
Provider Types

Create a Vector Provider
on top of GML Data

This section provides an example on how to create a vector provider on
top of GML data based on the sample data installed with the product (if
you chose that option).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to deploy the ATLANTA WFS on top of GML data:

1. If the data is not yet in a GML file, use the sample file
<APOLLO_HOME>/data/erdas-apollo/gml/
atlanta/atlanta21a.gml as GML file input. If the GML document has
to be produced, it can be generated through a GetFeature request on
any WFS service.

Typical Scenarios 33

Along with the GML file, it is necessary to have an XML Schema file
holding the feature types definitions used in the GML document. That
schema could be referenced at the beginning of the GML file but it can
also be obtained through a DescribeFeatureType request on any WFS
service. In our scenario, the schema is provided beside the GML file
and is named atlanta.xsd. Use it as value for the Type File field.

2. In the Basic Service Properties panel, set the following values:
Name: ATLANTA_GML
Title: City of Atlanta
Abstract: City of Atlanta, GML service setup using ERDAS
APOLLO
Keywords: GML service, Atlanta, Georgia, Buildings

A Mapping file could also be mentioned. In the case of a GML
provider, the gml-to-datasource mapping is trivial, but that file can
be used to set additional information such as the data extent, some
metadata, The distribution includes such a mapping file, named
generic_sql_mapping.xml and located beside the providers.fac.

3. Click GetCapabilities to check that the service is properly initialized.
An XML document displays and declares the feature types buildings
and roads.

Next Steps:

• When a WFS service is defined, it can be opened in the ERDAS
APOLLO Web Client and the layers can be presented as WFS
Layers.

• Adding Metadata to a WFS service allows you to publish richer
information.

• Creating styles on vector data allows you to expose it as WMS
layers. See Create Styles on Vector Data for guidance.

• For a GML provider to disable transactions, the Disable
Transaction property should be set to "true" in the Administration
Console.

More advanced information is provided in the "Provider Types"
chapter, for the GML and GML-T WFS - or Vector - Connectors.

34 Typical Scenarios

Create Styles on Vector
Data

It is possible to use the ERDAS APOLLO Style Editor tool to create a
style bundle that can be used to render the vector data. To do that,
follow these steps:

1. Start the ERDAS APOLLO Style Editor Application

2. Right-click on Project; choose Add Data Source then Web Feature
Server and click Next.

3. Input the URL of your service (e.g. http://localhost:8080/erdas-
apollo/vector/ATLCITY) and click Add, once your URL appears in
the upper window, click Next>>, choose a name and a title.

4. Click Finish.

The service and the defined feature types appear in the left pane. (The
Finish button is disabled after adding the URL.)

5. Right-click on each feature type name and choose Add to preview.
The name will display in the Layers panel and the right panel map will
fill with graphics.

Typical Scenarios 35

It frequently appears that a feature type holds heterogeneous
geometries (such as lines and multi-lines), leading to an error
message when trying to display them. It can be avoided by
enabling the forgiving flag for the data source. Right-click on the
project name (e.g. "ATLCITY") and choose Properties in the list.
In the panel, check the forgiving box.

6. To update one or more styles, right-click on the layer name in the
Layers view and choose Properties. A panel lets you configure your
style.

7. When you are finished with the rendering, deploy the styles using the
menu File -> Styles -> Deploy to Directory... . Choose the
<APOLLO_HOME>/config/erdas-apollo/rendering directory and
click Save. The set of styles will be copied there, allowing you to display
nice layers using the WMS GetMap interface.

When finished with the Style Editor, save your project into
<APOLLO_HOME>/tools/styleeditor

Publishing Images
in WMS

Raster Images Starting with ERDAS APOLLO 2010, Raster Images services are no
longer served by the "map" servlet. They are now included in the set of
services provided through the "coverage" servlet. Please refer to the
next section for the step-by-step sequence of setting up a Raster
Images service.

Publishing Raster
Data in WCS

This section describes how to configure a Web Coverage Service
Provider to serve datasets and raster images through the WMS and/or
WCS interfaces.

Simple Coverage
Services

This section provides an example based on the sample data over the
city of Atlanta, installed with the product (if you chose that option).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

36 Typical Scenarios

Add an Atlanta Tile (ECW)

Data Path: <APOLLO_HOME>/data/erdas-apollo/coverages/
mosaic/atl_tiles_1_1.ecw

1. After login, right-click on the Rasters node and choose Create Service.

2. In the Service creation wizard panel, select Raster data as Service type
and File as Data source type. Click Next.

3. Select Single as Service type. Click Next.

4. Choose the Data located on the server option. Click the Browse
button beside the Raster File field. Choose the tree
<APOLLO_HOME>/data/erdas-apollo/coverages/
mosaic/atl_tiles_1_1.ecw and click OK.

5. As Raster SRS, either encode EPSG:2240 or click the Select... button
to choose the NAD83/Georgia West State Plane (ftUS) projection.
Click Next.

6. Specify “Rockdale_Tile” as the Service Name, Rockdale as Title and
Abstract, Atlanta, Rockdale, ECW, 2240 as Keywords.

7. In the Select the main service properties panel, click Finish.

8. After a few seconds, a new item named Rockdale_Tile appears under
the Rasters tree node. The right pane of the Data Manager displays the
properties of the newly created service.

9. Click Get Capabilities to see the Capabilities document (if you see
some kind of error please go back and check all of your input
parameters and retry).

If the service is only intended to be used through the WMS
interface, open the Miscellaneous tab in the service properties
panel and uncheck the WCS box beside the Enabled Interfaces
property.

Mosaic and List
Coverage Services

Use preconfigured MultiSimple Coverage Service

This section provides an example based on the sample data over the
city of Atlanta, installed with the product (if you chose that option).

Typical Scenarios 37

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Add Atlanta 2002 ECW data:

Data Path: <APOLLO_HOME>/data/erdas-
apollo/coverages/mosaic

EPSG:2240

Background Value: 0

1. After logging in the Data Manager, right-click on the Rasters node and
choose Create Service.

2. In the Service creation wizard panel, select Raster data as Service type
and File as Data source type. Click Next.

3. Select List as Service type. Click Next.

4. Choose the Data located on the server option. Click the Browse
button beside the Raster Dir field. Choose the tree
<APOLLO_HOME>/data/erdas-apollo/coverages/mosaic and click
OK.

5. As Raster SRS, either encode EPSG:2240 or click the Select... button
to choose the NAD83/Georgia West State Plane (ftUS) projection.
Click Next.

6. In the main service properties panel, encode “ATLANTA_LIST_2002”
as Name, “Atlanta List” as Title and Abstract, “Atlanta, 2002, ECW,
2240” as Keywords.

7. In the main service properties panel, just click Finish. Notice that a
checkbox named Index data is checked, meaning that the collection of
images will automatically be indexed.

After a few seconds, a new item named ATLANTA_LIST_2002 is added
under the Rasters tree node. The right pane of the Data Manager
displays the properties of the newly created service.

8. Click the Get Capabilities link to see the Capabilities document (if you
see some kind of error please go back and check all of your input
parameters and retry).

38 Typical Scenarios

If the service is only intended to be used through the WMS
interface, open the Miscellaneous tab in the service properties
panel and uncheck the WCS box beside the Enabled Interfaces
property.

IndexProvider scenario

This section provides an example of an Index Provider scenario based
on the sample data over the city of Atlanta, installed with the product (if
you chose that option).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Add Atlanta 2002 ECW data:

Data Path: <APOLLO_HOME>/data/erdas-apollo/coverages/mosaic

EPSG:2240

Background Value: 0

1. After losing in the Data Manager, right-click on the Rasters node and
choose Create Service.

2. In the Service creation wizard panel, select Raster data as Service type
and File as Data source type. Click Next.

3. Select Mosaic as Service type. Click Next.

4. Choose the Data located on the server option. Click the Browse
button beside the Raster Dir field. Choose the tree
<APOLLO_HOME>/data/erdas-apollo/coverages/mosaic and click OK.

5. As Raster SRS, either encode EPSG:2240 or click the Select... button
to choose the NAD83/Georgia West State Plane (ftUS) projection.
Click Next.

6. In the main service properties panel, encode “ATLANTA_INDEX_2002”
as Name, “Atlanta Index” as Title and Abstract, “Atlanta, 2002, ECW,
2240” as Keywords.

7. In the main service properties panel, click Finish. Notice that a
checkbox named Index data is checked, meaning that the collection of
images will automatically be indexed.

Typical Scenarios 39

After a few seconds, a new item named ATLANTA_INDEX_2002 is
added under the Rasters tree node. The right pane of the Data
Manager displays the properties of the newly created service.

8. Click Get Capabilities to see the Capabilities document (if you see
some kind of error please go back and check all of your input
parameters and retry).

If the service is only intended to be used through the WMS
interface, open the Miscellaneous tab in the service properties
panel and uncheck the WCS box beside the Enabled Interfaces
property.

ArcSDE-Raster ERDAS APOLLO WMS supports serving raster data stored in ESRI
ArcSDE. This scenario describes how to set of a WMS over an ArcSDE-
Raster data source.

This scenario assumes:

• An ESRI ArcSDE server is running on a host named arc.sde.com.

• An SDE schema contains a table named BOSTON_SDER with a
raster column belonging to the SDE user "sdeusr" with the
password "sdepwd".

• The sample raster data on BOSTON are loaded.

• ERDAS APOLLO is installed on another server and the erdas-
apollo.war archive is deployed.

Refer to Provider Types for more configuration information.

Environment Configuration

Before configuring the service, add the ArcSDE SDK library to the web
application. This library is composed of a small set of jar files available
in the ArcSDE Installation Directory, under the lib folder. They can be
named jsdeXX_sdk.jar, jpeXX_sdk.jar, and possibly icu4j.jar where XX
is the version of ArcSDE.

40 Typical Scenarios

Copy those jar files into <APOLLO_HOME>/webapps/erdas-
apollo/profiles/eas/WEB-INF/lib (for APOLLO Essentials) or into
<APOLLO_HOME>/webapps/erdas-apollo/profiles/eaim/lib (for
APOLLO Advantage/Professional). Rebuild the erdas-apollo webapp
by running ant from <APOLLO_HOME> as described in Using Apache
Ant to Rebuild the Webapps on page 161 and redeploy them into your
servlet engine as described in Deploying WAR Files on Supported
Servlet Engines on page 164.

Provider setup

Steps to deploy a WMS on top of an ArcSDE-Raster server:

This section describes the steps specific to ArcSDE-Raster and
provides an example based on the sample data over the city of Boston,
installed with the product (if you chose that option).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

1. After logging in the Data Manager, right-click on the Rasters node and
choose Create Service.

2. In the Service creation wizard panel, select Raster data as Service type
and Database as Data source type. Click Next.

3. Select ArcSDE (portable) Service as Service type. Click Next.

4. In the main service properties panel, encode the following values:
Name: BOSTON_SDER
Title and Abstract: City of Boston
Keywords: ArcSDE, Boston, Raster

5. Click Next then Finish.

A provider type named "ArcSDE (native) Provider" also exists but
it is deprecated and implies a much heavier environment setup as
it uses native libraries (DLLs).

6. After a few seconds, a new item named "BOSTON_SDER" is added
under the Rasters tree node. The right panel of the Data Manager
displays the properties of the newly created service.

Typical Scenarios 41

The creation wizard is currently limited to a part of the steps
needed to create a valid ArcSDE-Raster service. The rest of the
work has to be done in the properties panel of the Data Manager
for that service, as described below.

7. In the Data Source tab of the properties panel, expand the Connect
String property and fill the sub-fields (most of the time, host, port,
instance, user and password suffice).

8. The layers to be published by the service need to be configured.
Expand the layers property and click on Add Entry. Expand the newly
displayed node to show its subproperties. Some of those properties
need to be filled, such as table and column. The proposed values are:
SRS set to EPSG:26986
Title: SDE Raster Image on Boston
column: image
table: boston_raster

9. Refer to Provider Types for more capabilities. When done, click the
Save icon to persist your changes into the actual configuration file.

10. Click GetCapabilities to check that the service is properly initialized.
An XML document displays and declares a layer named
boston_BOSTON_RASTER_image_null.

Next steps:

• When a WMS service is defined, it can be opened in the ERDAS
APOLLO Web Client and the layers can be presented as WMS
Layers.

• If there are several ArcSDE raster tables and several layers are to
appear in the service, there are two ways to do it. The first way is to
use a pattern as table value (e.g. "uk_%"), that will produce one
layer per raster table; the layer name will have the table name. The
second way is to explicitly define several "layers" properties by
clicking several times on the Add Entry link.

• Refer to Provider Types for more configuration information.

Populate, Browse
and Query the
Catalog

This section describes typical usage of the catalog through its web
interface. An exhaustive description of the Catalog Web Interface is
provided in the Catalog Web Interface section. How is this different
from the CatalofWebInterface in the WC User’s Guide?

42 Typical Scenarios

Authentication Although the default configuration of the catalog allows read-only
access to part of the content, it is usually necessary to authenticate to
get full access and enable specific operations, like publishing, updating
or management of the catalog.

1. On the main page of the catalog web interface, click login.

2. Then you have two text fields, the first (left to right) is the user name,
the second is for the password.

3. Finally, press enter or the ok button. If the authentication succeeds,
the username appears at the upper right of the page, beside the Logout
action. Otherwise, the message "Invalid login/password" displays.

Publish a service If the logged in user has the required roles, he will be allowed to publish
data in the catalog. By default, roles that are granted these rights are
BABEL_PUBLISHER and BABEL_ADMIN.

1. First, log in with an user having one of the BABEL_PUBLISHER or
BABEL_ADMIN role.

2. On the upper left, use the Publish action.

3. The publish operation accepts various types of resources. This section
will focus on OGC Service publishing; publishing of other types of
resources will be covered in the Catalog Web Interface section.

4. Using the drop-down list, specify the OGC service type to publish
(WMS, WFS, WCS). The “W*S” value will cause the publish process to
use heuristics to guess the service type from the URL (checking for the
presence of a “service” parameter, inspecting the structure of the URL).
If a specific value (WMS, WFS, WCS) is selected, it always overrides
the service type that may be inferred from the URL.

Typical Scenarios 43

5. Type in the service URL in the text field. It can be the URL of the
GetCapabilities operation, or simply the base URL of the service.

6. Press the Publish button or enter. The publishing process will start and
may take a while, depending of the size of the resources being
harvested.

7. When the publish process is done, the interface is redirected to the
newly created object.

Data Discovery This section explains how to discover and browse resources stored in
the catalog. Advanced browsing scenarios are covered in the Catalog
Web Interface section.

Pressing CTRL+ALT keys while in the Browse panel will display
contextual help.

1. Go to the Browse panel. This panel is also available for anonymous
users.

2. Select the data type of interest in the drop-down list. This drop-down
lists the usual data types of interest, i.e. Vector, Map and Coverage
resources/services.

3. To search for vector data regarding road in Atlanta, select “Vector
layers” and type "road* Atlanta" in the search bar. Note that the wildcard
('*') is used here to hit the road and roads words.

44 Typical Scenarios

This will result in a list of matching records (in this case Feature Types),
presented with a brief description and thumbnail if available. Clicking on
the title of any of those records will browse to the detailed description of
that record, which may contain links to other records where relevant
(e.g. a FeatureType record will contain a link to its owning
WebFeatureService).

At any point while browsing the catalog, icons on the upper right of the
browse area provide quicklinks to other representations of the current
record(s), in KML, GeoRSS, or for a direct view in GoogleMaps (if the
catalog server is publicly available).

As an example of use, the current query on “road AND Atlanta” can be
exported to GeoRSS. By doing so, the resulting GeoRSS resource will
represent a feed that can alert you any time a new resource matching
that query is registered in the catalog.

At the top of the browsing area, paging links are displayed when the
number of results is too big for a single page display. They offer an easy
way to quickly go through a large result set.

By default, no more than 500 records are counted. If you really need to
browse further, or to know the actual total number of results, browse to
the last page, as this will force the counting of the whole result set.

Using the CSW endpoint This section explains how to use the CSW endpoint to discover data.

The CSW endpoint is available out of the box at the URL
http://<serverURL>/erdas-apollo/catalog/csw.jsp. Requests
compliant with the OGC CSW 2.0.2/ebRIM 1.0 Application Profile can
be sent to this endpoint.

To easily test those requests, a CSW test page is available in the
catalog web interface. This page provides a convenient way to send
requests using HTTP POST on the CSW endpoint; it also contains a set
of sample CSW requests.

This page can be accessed by logging as admin in the web interface,
and then click on the CSW tab. Please see the Testing the CSW
endpoint section for details on how to use the catalog web interface.

Typical Scenarios 45

Assembling
Services and
Combining Data

This section describes the Pyramid WMS and Cascading WMS.

Pyramid WMS A common situation encountered is having multiple resolutions of an
image or a set of images. There is a trade-off between performance and
the size of the image being served. The request's map scale determines
the need to serve a larger, high-resolution image or a smaller, low-
resolution image. Raster pyramiding can be used to define a scale
range and output resolution for quick access and display of very large
images.

The Pyramid Provider connector acts as a proxy provider on top of one
or more providers and chooses among the providers for each request
depending on the scale. Therefore, it is necessary to configure one
provider for each different data sources and display scale plus the
pyramid provider itself.

The Pyramid Builder tool automatically creates an optimized pyramid of
Geotiff files from a layer of images. Refer to Provider Types for the
steps needed to configure a Pyramid Provider. Refer to Chapter 14
"Tools and Viewers", Section 11 "Pyramid Builder" for the steps needed
to create a pyramid with the Pyramid Builder.

Cascading with an
OpenGIS WMS Context

A WMS provider can be set up on top of an OGC WMS Context file or
a URL that serves Context. Various OGC-WMS compliant tools are
available to build a Context file, including the Data Manager and the
Web Client.

Refer to Provider Types for an example of configuring a Context
Provider.

Chaining Services This section explains how to configure services that will chain other
existing OGC-compliant WMS, WFS and WCS.

Proxying a OpenGIS-
compliant WMS

To proxy an existing OGC-compliant WMS, use the ERDAS APOLLO
Data Manager to define and configure a WMS Proxy provider. The
distribution predefines such a service named PROXYDEMIS. To define
your own use the following steps:

This workflow is no longer performed through the Administration
Console.

1. Open the Data Manager

46 Typical Scenarios

2. Connect to your running ERDAS APOLLO Server

3. In the Explorer tab, open the tree

4. On the Maps & Proxies tree node, right-click and select Create
Service

5. Leave the Service type field set to Maps & Proxies, and select the
Advanced Data source type

6. Click Next and choose the service type Proxy Service

7. Click Next and enter the basic information for the proxy service (e.g.,
PROXYDEMIS)

8. Click Finish

9. Your new proxy service has been created. Go to the Explorer tab, and
select it in the tree. Right-click on it, and select Edit Provider

10. In the Data Source properties tab, enter the URL of the WMS service
that is being proxied

11. Save your modifications, and reload the service

Other parameters can be configured to enhance the proxied service,
including:

• LIMITEDSIZE

• LIMITEDCOLOR

• LIMITEDTRANSPARENCY

• HIDDEN_MAP_FORMAT

• HIDDEN_INFO_FORMAT

• USER

• PASSWORD

For a complete definition of the parameters, see Detailed Parameters
of a Provider.

Proxying a OpenGIS-
compliant WFS

To proxy an existing OGC-compliant WFS, use the ERDAS APOLLO
Data Manager to define and configure a WFS Proxy provider. The
distribution predefines such a service named PROXYWORLD. To
define your own use the following steps:

Typical Scenarios 47

This workflow is no longer performed through the Administration
Console.

1. Open the Data Manager

2. Connect to your running ERDAS APOLLO Server

3. In the Explorer tab, open the tree

4. On the Vectors tree node, right-click and select Create Service

5. Leave the Service type field set to Vector Data, and select the
Advanced Data source type

6. Click Next and select the Proxy Service service type

7. Click Next and enter the basic information for the proxy service (e.g.,
PROXYWORLD)

8. Click Next, then Finish

9. Your new proxy service has been created. Go to the Explorer tab, and
select it in the tree. Right-click on it, and select Edit Provider

10. In the Data Source properties tab, enter the URL of the WFS service
that is being proxied

11. Save your modifications, and reload the service

Other parameters can be configured to enhance the proxied service,
including:

• TITLE

• ABSTRACT

• KEYWORDS

• CONTACT

• USER

• PASSWORD

For a complete definition of the parameters, see Detailed Parameters
of a Provider.

48 Typical Scenarios

SLD Portrayal Service for
Features and Coverages

The SLD Portray Provider does not hold any data; it simply forwards
requests to a WFS or a WCS, ingests a collection of features or
coverages, and portrays them using the SLD document. The SLD
document is submitted along with the GetMap request and produces an
image in the format requested. A Portray Provider is preconfigured in
the ERDAS APOLLO distribution and is accessible at:
http://localhost:8080/erdas-apollo/map/PORTRAY.

SLD Portray Service requires an SLD document. See Portrayal
Capabilities, section "Languages" for the whole set of supported tags.

To set up a new Portray Provider or to modify the pre-configured one
refer to Provider Types, the "Portray Provider" section.

Producing Smart
Maps

This section presents ways to improve the quality of maps produced
using WMS.

WMS by Portraying
Features

This scenario assumes a WFS is available and responds successfully
to GetCapabilities, DescribeFeatureType and GetFeature requests. To
display maps, instead of obtaining GML documents describing features,
create portrayal styles that instruct the WFS how to transform the
requested features.

To create styles, follow these steps:

1. Set the root directory where the WMS servlet will search for styles.
Open the providers.fac file and set the DIR attribute of the <STYLE>
element in the <CONFIGURATION> section to a path on the system
where styles will be stored. The default is
<APOLLO_HOME>/config/erdas-apollo/rendering.

2. Start the ERDAS APOLLO Style Editor. Add a WFS Data Source by
entering the service URL. For example: http://locahost:8080/erdas-
apollo/vector/ATLANTA_VECTOR. The various feature types defined
on that server will be displayed. Use the ERDAS APOLLO Style Editor
to create styles for each of the feature types that will be displayed in
map requests. See The ERDAS APOLLO Style Editor for details on
exploring and styling data.

3. When finished, select File > Styles > Create Bundle. This will create a
.gar file. Save this file in the styles root directory of the WFS (Step 1).

4. To view the stylized features, discover the service as WMS in the
ERDAS APOLLO Web Client and select one of the newly-styled layers
for addition in the map.

Typical Scenarios 49

Map Dressing Service The Map Dressing Service adds a grid, scale bar, border or north arrow.
Use the ERDAS APOLLO Style Editor to build portrayal styles for a
WFS that will contain these presentation elements or output them from
a distinct service independent of the existing data sources. The Map
Dressing service behaves in exactly the same way as an OGC-
compliant WMS. The only difference is that the Map Dressing service
has no data and builds the map on-the-fly for each request using a
configuration file.

The ERDAS APOLLO distribution provides a pre-configured Map
Dressing provider that is configured to respond to requests at
http://localhost:8080/erdas-apollo/map/MAPDRESSING.

Read the content of the WMS capabilities that is returned from a
GetCapabilities request from that service, to determine what layers and
styles are provided. See Using the Map Dressing Service for a more
detailed description of the parameters to include in a request. That
chapter also explains how to adapt the configuration of a Map Dressing
Service to add a custom north arrow or define new styles with
predefined values for some of the parameters.

Advanced Portrayal Classical portrayal aims at rendering features or coverages to produce
realistic maps. To improve map branding or apply more complex
processing, use the Advanced ERDAS APOLLO Portrayal Engine.

Advanced portrayal configuration includes:

• Legend Display

• Choice of Symbols from a large, extensible symbol library

• General Range and Discrete Classifications

• Road-Oriented Range and Discrete Classifications

• Patterner for area rendering

• Symbol Roller to display one or more symbols along a line

• Variable Markers and Numbers for point display

• And much more

The ERDAS APOLLO Style Editor allows interactive configuration to
create rules that will produce professional cartographic output. These
custom rules can be added to the style library and reused.

50 Typical Scenarios

Add a Legend

1. Open the Style Editor.

2. Select Data -> Add Data Source and the Attach a New Feature Server
dialog opens.

3. Click Next to accept the default of Web Feature Server (HTTP).

4. Specify a vector layer to use such as http://yourserver:8080/erdas-
apollo/vector/ATLANTA_VECTOR.

5. Click Add then Next. The dialog asks for the Name and title for the new
datasource.

6. You do not need to specify a name or title. Click Next to continue.

7. If you layer is secure, enter your login and password and click Next.
Otherwise, click Finish. You new layer appears in the Styles pane.

8. Click the plus sign in the Styles pane to expand the
ATLANTA_VECTOR layer.

9. RIght-click on futurelanduse and select Create Style. The Add Style
dialog opens.

10. Click GEOMETRY (type:Polygon) -> Next. The dialog prompts you to
select a source for the new style.

11. Click Create new style -> Next. The dialog prompts you for the type of
style.

12. Click the drop-down list and select Discrete Classification.

13. Click Next and the dialog prompts you for a name for the new style.

14. Enter a name and then click Properties. The Style Properties dialog
opens.

15. Click the Classification tab.

16. Click the drop-down for Property and select LANDUSE. Make sure the
Type is Literal.

17. Click Populate and the Populate Style List dialog opens.

18. Change the Stroke Color and Fill Color to suit your needs.

19. Click OK and the Style Properties dialog opens.

20. Click Apply, then OK

Typical Scenarios 51

21. Click Apply (don’t see this button) and then OK and return to the Style
Editor.

Add the Legend

22. In the Styles pane, right-click ATLANTA-VECTOR and select Dressing
Style Properties from the drop-down menu. The Style Properties
dialog opens.

23. Click the Legend tab -> Enabled -> Apply -> OK and the dialog closes.

24. In the Styles pane, expand the futurelanduse layer and note that the
style layer you just entered displays.

25. Right-click on the style name and click Add to Preview from the drop-
down list. The Style you set up in Style Properties is applied to the layer
and the legend displays.

Select File and Deploy to Folder

26. Select File from the menu bar then Styles -> Deploy to Directory.

27. Navigate to APOLLO_HOME\config\erdas-apollo\rendering and click
Save.

28. Click Yes to overwrite the files.

Start the Data Manager

29. Start the Data Manager and log in.

30. Expand the vector, right-click on ATLANTA_VECTOR and select Edit
Provider from the drop-down list. Notice that the ATLANTA_VECTOR
tab appears next to Explorer.

31. Click Flush service cache and then restart the service.

Start the Style Editor

32. Open the Style Editor.

33. Select Data -> Add Map Source -> Web Map Server -> Next.

34. Enter http://yourserver:8080/erdas-apollo/vector/ATLANTA_VECTOR
in the New field.

35. Click Add -> Finish. The new raster layer appears in the Style pane.

36. Expand Vector Data over Atlanta, futurelanduse and the style you
created appears.

52 Typical Scenarios

37. RIght-click on the style and select Add to Preview to see the style layer
in the view.

Sample WFS
Requests with
Filters

To output GML from a WFS, build and run GetFeature requests, as
specified in the OGC WFS 1.0.0 Implementation Specification using
"Filter" expressions as specified in the OGC Filter Encoding 1.0.0
Implementation Specification. Note that the Filter Encoding syntax is
used for other types of OGC-compliant requests such as performing
transactions or locks on a WFS or using SLD in WMS.

This section describes how to build WFS requests using filters. The
examples below are based on the BOSTON_ORA database defined
earlier. Following each scenario is a GetFeature request with a different
type of Filter and an explanation of the content of that request.

Filter by FeatureID The Boston County Tax Office has examined the city maps that are
being published on the Internet using WFS and has discovered that a
few of the rivers are misrepresented. The Office informs the data
publisher about which river names, IDs and related place names need
to be reviewed. The data publisher can use a FeatureID matching
request to extract the properties of these river features as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 version="1.0.0"
 service="WFS" >
 <ogcwfs:Query typeName="hydro">
 <ogc:PropertyName>HD_ID</ogc:PropertyName>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <ogc:Filter>
 <ogc:FeatureId fid="hydro.337" />
 </ogc:Filter>
 </ogcwfs:Query>
 <ogcwfs:Query typeName="place_names">
 <ogc:PropertyName>PLACES_ID</ogc:PropertyName>
 <ogc:PropertyName>NAME</ogc:PropertyName>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <ogc:Filter>
 <ogc:FeatureId fid="place_names.18" />
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

Typical Scenarios 53

In this GetFeature request, the data publisher issues a query that
addresses the "hydro" and the "place_names" feature types where the
output is restricted by explicitly providing column names inside
<ogc:PropertyName> element tags. In the "hydro" query, the data
publisher adds an <ogc:Filter> to output a single feature with the feature
Identifier (fid) equal to "hydro.3930". Similarly, the "place_names"
output is restricted to the feature with fid equal to "place_names.3135".
The output will be a single "hydro" feature and "place_names" feature.

Filter Equal to an
Alphanumeric Property

The Boston Tax Office has also asked the data publisher to provide
demographic analysis for the Mattapan neighborhood. To do this, the
data publisher would build a request on a single feature type that is
filtered on an alphanumeric property using the OGC comparison filter
for equality - PropertyIsEqualTo.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 version="1.0.0"
 service="WFS" >
 <ogcwfs:Query typeName="place_names">
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>NAME</ogc:PropertyName>
 <ogc:Literal>MATTAPAN</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

In the request, the data publisher uses the "place_names" feature type.
The <ogc:PropertyIsEqualTo> Filter receives two arguments:

PropertyName: This contains the name of the feature type property to
filter against. This can be written either as a string ("NAME") prefixed
with the feature_type name ("place_names.NAME") or prefixed with the
namespace ("wfs:NAME"). Refer to next example for details on creating
a fully-qualified filter property. Literal: This is used to compare against
the property name.

For more information on the filter operator names and arguments, refer
to the "ERDAS APOLLO Server Concepts Guide."

54 Typical Scenarios

Filter Equal with
Namespaces

Feature schema managed by the WFS are typically more complex than
the sample data (BOSTON_ORA) environment and could contain a
hierarchy of feature types and properties whose definitions are spread
over several schema documents. Avoid ambiguity with well defined
feature type names or properties. For example, add the namespace
prefixes to the feature name types and properties using the same
request from the previous example. Each namespace prefix
corresponds to a schema document removing the ambiguity related to
features with similar names, but in a different hierarchy.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 xmlns:wfs="http://www.ionicsoft.com/wfs"
 version="1.0.0"
 service="WFS" >
 <ogcwfs:Query typeName="wfs:place_names">
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>wfs:place_names.NAME</ogc:PropertyName>
 <ogc:Literal>MATTAPAN</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

In this request, the namespace "http://www.ionicsoft.com/wfs" is
defined and assigned the prefix "wfs" in the <ogcwfs:GetFeature>
attribute. This namespace corresponds to the highest level feature type
schema of this WFS (see boston_ora.xsd).

In the remainder of the request, each reference to a feature type is
prefixed with "wfs:" and each feature property prefixed with the feature
type name. This allows the data publisher to have more than one
feature type with the same property name and more than one schema
with the same feature type name.

Filter on Two
Alphanumeric Properties

The data publisher wants to enable a query in the WFS so the public
can locate parks based on specific criteria. In this example, the query is
to select parks that are protected areas and larger than 100,000 square
meters. The Filter request is on a single feature type "protectedareas"
where the SITE_NAME must end with "PARK", and the AREA must be
larger than 100,000 square meters. To retrieve the sites that match both
criteria, the filters are combined with the AND logical operator.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"

Typical Scenarios 55

 version="1.0.0"
 service="WFS" >
 <ogcwfs:Query typeName="protectedareas">
 <ogc:PropertyName>AREA</ogc:PropertyName>
 <ogc:PropertyName>COUNTY_COD</ogc:PropertyName>
 <ogc:PropertyName>SITE_NAME</ogc:PropertyName>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <ogc:Filter>
 <And>
 <ogc:PropertyIsLike>
 <ogc:PropertyName>SITE_NAME</ogc:PropertyName>
 <ogc:Literal>%PARK</ogc:Literal>
 </ogc:PropertyIsLike>
 <ogc:PropertyIsGreaterThan>
 <ogc:PropertyName>AREA</ogc:PropertyName>
 <ogc:Literal>100000</ogc:Literal>
 </ogc:PropertyIsGreaterThan>
 </And>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

To query for the "protectedareas" feature type, the request specifies the
"typeName" attribute in the <ogc:Query> element. Adding
<ogc:PropertyName> elements just after the <ogcwfs:Query> restricts
the output properties to the AREA, COUNTY_CODE, SITE_NAME and
GEOMETRY.

The <ogc:Filter> block starts with the <AND> logical operator with two
arguments.

The first comparison uses the "PropertyIsLike" operator that makes a
pattern comparison. The query is for protected areas whose
SITE_NAME ends with "PARK."

The second operator, "PropertyIsGreaterThan," allows comparison
with numeric values. The query is for protected areas where AREA is
greater than 100,000 square meters.

In the BOSTON_ORA sample database, four feature types meet the
first criteria and two of those have an area of more than 100,000 square
meters: FRANKLIN PARK and DORCHESTER PARK.

Geometry Filter:
Operator BBOX

The Boston Tax Office asked the data publisher to extract information
in a given area (around Mattapan) to examine the existing
infrastructure. The data publisher knows that Mattapan has a
rectangular boundary with specific coordinates and formulates a
request to query for highways and place names within the bounding
box, or spatial extent, of the area.

<?xml version="1.0" encoding="UTF-8" ?>

56 Typical Scenarios

<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 version="1.0.0"
 service="WFS" >
 <ogcwfs:Query typeName="place_names">
 <ogc:PropertyName>NAME</ogc:PropertyName>
 <ogc:PropertyName>COUNTY</ogc:PropertyName>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <ogc:Filter>
 <ogc:BBOX>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <gml:Box>
 <gml:coordinates>233000,890000
235000,892000</gml:coordinates>
 </gml:Box>
 </ogc:BBOX>
 </ogc:Filter>
 </ogcwfs:Query>
 <ogcwfs:Query typeName="highways">
 <ogc:PropertyName>RT_NUMBER</ogc:PropertyName>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <ogc:Filter>
 <ogc:BBOX>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <gml:Box>
 <gml:coordinates>233000,890000
235000,892000</gml:coordinates>
 </gml:Box>
 </ogc:BBOX>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

This request applies to the "place_names" and "highways" feature
types and the output properties are restricted using the
<ogc:PropertyName> element.

For each feature type, the <ogc:Filter> block uses the "ogc:BBOX"
element to specify the query's spatial operator. This operator is
intended to restrict the feature extraction to the given Bounding Box.
The first argument must be a geometric property name ("GEOMETRY"
in the example) and the second argument must be a <gml:Box>
element that provides an extraction rectangle defined by the
coordinates for the lower-left and upper-right corners.

This request returns a GML document composed of a place_name,
"MATTAPAN"', with six highway sections.

Typical Scenarios 57

Figure 3: A BBOX Filter Request

Geometry Filter:
Operator Intersects with
a Given Polygon

The Boston Environmental Office receives a message that commercial
ground transportation around Boston has been re-routed and that
several of the highways are experiencing increased traffic volume.
There is concern that this could pose a threat to some of the
environmentally protected areas that intersect the highways. The Office
has asked the data publisher to extract those protected areas crossed
by major highways.

The data publisher creates a request on a single feature type,
highways, with a filter on the geometric property, a LineString, to extract
the features intersecting a given polygon.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 version="1.0.0"
 service="WFS" >

58 Typical Scenarios

 <ogcwfs:Query typeName="protectedareas">
 <ogc:PropertyName>SITE_NAME</ogc:PropertyName>
 <ogc:PropertyName>COUNTY</ogc:PropertyName>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <ogc:Filter>
 <ogc:Intersects>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <gml:Polygon srsName="EPSG:26986">
 <gml:outerBoundaryIs>
 <gml:LinearRing srsName="EPSG:4326">
 <gml:coordinates>233200,891700 233700,891600 234050,892400
234100,893600 233600,893700 233300,892900
233200,891700</gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </ogc:Intersects>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

This request applies to the "protectedareas" feature type. The
SITE_NAME, COUNTY and GEOMETRY properties from the feature
type will be extracted.

The query finds the intersection (ogc:Intersects) of the protected areas
GEOMETRY and a polygon (gml:Polygon) that surrounds the area of
interest. The image below shows the geographic extent of the request.

This request produces a GML document composed of four protected
areas features.

Typical Scenarios 59

Figure 4: A Filter to Intersect with a Polygon

Geometry Filter:
Operator Beyond a Given
Point

The data publisher's boss would like to spend the upcoming weekend
taking a walk and a swim somewhere in Boston county. He asked the
data publisher to find a location in the county that is close to a body of
water and the office location.

The data publisher requests the feature type that includes rivers and
lakes and applies a filter to the geometric property to extract the
features which are not beyond a defined distance from the office.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 version="1.0.0"
 service="WFS" >
 <ogcwfs:Query typeName="hydro">
 <ogc:PropertyName>*</ogc:PropertyName>
 <ogc:Filter>
 <ogc:Not>

60 Typical Scenarios

 <ogc:Beyond>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <gml:Point srsNAME="EPSG:26986">
 <gml:coordinates>234500,890000</gml:coordinates>
 </gml:Point>
 <ogc:Distance>500</ogc:Distance>
 </ogc:Beyond>
 </ogc:Not>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

The request applies to the "hydro" feature type. The data publisher can
obtain all hydro properties by providing a wild card ("*") in the
<ogc:PropertyName> element.

The search consists of locating water bodies that are not beyond
(operators ogc:NOT and ogc:BEYOND) 500 meters from a given point.
The <ogc:NOT> operator is unary and takes a single argument. The
<ogc:BEYOND> operator requires three arguments: the feature
geometric property (GEOMETRY), a geometry for the spatial operation
(<gml:Point> geometry), and a distance (ogc:Distance). The image
below shows the starting point and the area that matches the distance
parameter.

The current OGC WFS and Filter Encoding specifications do not
support spatial "Joins". Otherwise, the office location geometry
could have been used instead of a gml:Point geometry.

Typical Scenarios 61

Figure 5: A Filter to not be Beyond a Point

Filter combining Spatial
and Non-Spatial
Operators

There has been an accident in Boston involving a truck carrying
hazardous materials. The data publisher has been asked to locate the
roads that intersect the accident and prioritize road closures based on
road classification.

A Filter is applied to the "roads" feature type using the
"PropertyIsBetween" operator. The "Crosses" operator is applied to
locate all the roads that are crossed by the spill.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 version="1.0.0"
 service="WFS" >
 <ogcwfs:Query typeName="roads">
 <ogc:PropertyName>STREETNAME</ogc:PropertyName>
 <ogc:PropertyName>CLASS</ogc:PropertyName>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>

62 Typical Scenarios

 <ogc:Filter>
 <ogc:And>
 <ogc:PropertyIsBetween>
 <ogc:PropertyName>CLASS</ogc:PropertyName>
 <ogc:LowerBoundary>
 <ogc:Literal>2</ogc:Literal>
 </ogc:LowerBoundary>
 <ogc:UpperBoundary>
 <ogc:Literal>3</ogc:Literal>
 </ogc:UpperBoundary>
 </ogc:PropertyIsBetween>
 <ogc:Crosses>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <gml:LineString srsName="EPSG:26986">
 <gml:coordinates>232900,894000 235500,892750
237000,891000</gml:coordinates>
 </gml:LineString>
 </ogc:Crosses>
 </ogc:And>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

This request applies to the "roads" feature type. The STREETNAME,
the road CLASS and the GEOMETRY of the roads will be extracted.

The search consists of applying the AND operator to two filters. The first
filter restricts the roads to Class 2 and 3. The second filter uses the
"Crosses" spatial operator. The parameters for <ogc:Crosses> are the
feature property name (GEOMETRY) and the geometry to compare
against. The result is a LineString representing the Class 2 and 3 roads
impacted by the spill.

Typical Scenarios 63

Figure 6: A Filter to Cross a LineString

Manage Data and Enhance Services 63

Manage Data and Enhance Services
This Chapter provides additional steps for enhancing and managing
data and services.

• Restrict the data

• Add a copyright to protect data

• Create advanced filtering in GetMap requests

• Create a custom SRS

• Add functions for more processing by your WFS

Restrict Data Data often has a commercial and/or legal value and, therefore,
protecting data is a major concern for data providers. This section
describes a set of configurations that provide restrictions on published
data.

• Disabling some of the request types that can be sent to the service

• Hiding columns to show only a subset of the underlying data

• Disabling output formats to prevent the actual data from being
extracted

Disable Interfaces Service Providers over vector data (Shapefile, Oracle) automatically
support the OGC-WMS and OGC-WFS interfaces. This means that a
user can request maps as well as features in GML or Shapefile.

A data provider may want to allow map output but not deliver the vector
data as features, or, conversely, provide access to data but restrict the
ability to create a map.

Those restrictions can be activated by setting the "Enabled Interfaces"
field on the "Miscellaneous" tab of the Edit Provider feature of ERDAS
APOLLO Data Manager. Supported parameter values are "wms", "wfs"
or both. This disables the associated set of request types: for "wms", the
WMS GetCapabilities, GetMap and GetFeatureInfo and for "wfs", the
WFS GetCapabilities, DescribeFeatureType, GetFeature, LockFeature
and Transaction.

64 Manage Data and Enhance Services

WFS Operations:

In the mapping file of the WFS Provider, the <Operations> tag in the
<Info> section of each feature type contains the list of supported WFS
operations. The value "*" enables all operations, query and
transactions. Operation values are Query, Insert, Update, Delete and
Native. Below is an example for "wfs:roads" from an Oracle provider
mapping file.

<!--Info for type wfs:roads-->
<Info name="wfs:roads">
<Operations>Query,Insert</Operations>
<SRS>EPSG:26986</SRS>
<BoundingBox SRS="EPSG:26986" minx="227317.38" miny="889948.26"
maxx="238669.29" maxy="901300.18"/>
</Info>

WMS Operations:

By default, a WFS Provider supports the three basic WMS request
types including GetFeatureInfo. To restrict the allowed request types,
set the <Queryable> tag to "false" in the <Info> tag of the feature type.
This sets the "queryable" attribute to "0" in the WMS capabilities
document and GetFeatureInfo requests on that feature type are denied.

Example: <Queryable>false</Queryable>

Hiding Columns When a vector provider's mapping file is created using SQL mapping or
the FromSQLGenerator tool, the mapping between the feature type
attributes and the table columns is often one-to-one. However, it is
possible to hide some of the columns to prevent disclosure of useless
or crucial information or produce lighter results.

To achieve this, create explicit mapping and schema files:

• In the Mapping file, remove the corresponding <Element> and
<Geometry> lines for the mapping of any columns that should be
hidden.

• In the Schema file, remove the declaration of the properties that are
no longer mapped with a column name.

Submit a DescribeFeatureType request to see that the removed
properties are no longer visible. A GetFeature request will confirm that
the corresponding column values are hidden.

Manage Data and Enhance Services 65

Disable Output Formats When the provider is configured, the servlet will automatically publish,
in the WMS Capabilities document a set of formats in which the maps
or feature information can be requested. This set of formats can vary
depending on the underlying data type: raster, vector, or coverage.

There may be a requirement to remove some of the formats and reject
requests asking for those formats. This can be done easily by setting
the "Hidden Map Formats" and "Hidden Info Formats" fields in the
"Styling Info" tab page of the provider definition. The values are a
comma-separated list of format names. For raster formats, the possible
values are GIF, JPEG, PNG, SVG, TIFF, WBMP and XBMP. These
correspond respectively to the mime-types image/gif, image/jpeg,
image/png, image/svg+xml, image/tiff and GeoTIFF,
image/vnd.wap.wbmp and image/x-bmp. For information formats, the
values are GML, HTML, TXT and XML, and correspond respectively to
the mime-types application/vnd.ogc.gml, text/html, text/plain and
text/xml.

If all the possible formats are disabled, the service capabilities
document will become invalid against the DTD or schema. In
addition, the client applications could behave strangely when
querying the service.

Add a Copyright or
Watermark

When maps are produced by the service, the owner of the service could
expect the intellectual property of that map to be preserved. Several
ways exist, in ERDAS APOLLO, to burn a text of an image into a map
or GML document.

Access the ERDAS APOLLO Data Manager, highlight the Service
Provider in the Explorer view, right-click, then select Edit Provider ->
Security Parameters and enter the text in the Copyright field. The text
you enter will appear in the upper left corner of the image if you request
a map, or in the header of your GML document if you extract features.
For this solution, you can only use text and you cannot change the
location or the appearance of the text.

If you are managing vector data layers and want a raster image to be
added to the output, use the map dressing function of the ERDAS
APOLLO Style Editor and follow these steps.

1. Navigate to <Apollo_Home>\config\erdas-
apollo\rendering\mapdressing\collection\northarrow and
copy/paste the arrow folder.

2. Rename the copied folder to "copyright".

66 Manage Data and Enhance Services

3. Edit the SVG.prop in it by changing the symbolName value with the one
you have chosen.

4. Navigate to <Apollo_Home>\tools\styleeditor\data\Symbols
and retrieve the symbol you have chosen to be added as watermark to
the context.

5. Paste the file in <Apollo_Home>\config\erdas-
apollo\rendering\mapdressing\symbol\lib1.

6. Add the MAPDRESSING provider in the ERDAS APOLLO Style Editor
(http://localhost/erdas-apollo/map/MAPDRESSING).

7. To make your styles persistent and available to other clients, deploy
them on the server. (File -> Styles -> Deploy to Directory and choose
the <Apollo_Home>\config\erdas-apollo\rendering folder).

8. Add the vector and raster layers on which you want to see the
watermark.

9. Export your changes as a context (File -> Export Context...).

10. Edit the mappresentation_layers.xml (located in
<APOLLO_HOME>\APOLLOversion_pro_gm\config\erdas-
apollo\providers\map) and add the following line under the "<layer
name="northarrow"" tag:

<style name="copyright" title="Copyright watermark" />

11. Look for the watermark when adding this context in the webclient.

Add a CRS to WCS
GIO Decoder
Framework

ERDAS APOLLO Server is currently composed of different components
that use their own projection engines to support different spatial
reference systems. It uses an OGC standard XML file-based projection
engine and the WCS GIO decoder plug-in, which provides image
decoding capability using the ERDAS IMAGINE raster engine, is based
on ERDAS IMAGINE (EPRJ) projection engine.

As of APOLLO 10.0, the GIO decoders are not available on Linux
platforms.

Datasets that contain EPRJ-based projection representation and
decoded via WCS GIO decoders are translated to ERDAS APOLLO
projection representation. The bridge between these engines is the
European Petroleum Survey Group (EPSG) code, which is the standard
for identifying a CRS. Using EPSG code has the advantage because
they describe CRS unambiguously and let you define your own by
extensions.

Manage Data and Enhance Services 67

The difference between the engines come into play in the following
cases:

• Add an EPSG Code: The system is not preconfigured with a valid
EPSG code that you can use.

• Define a CRS: You have a coordinate system with all its parameters
that is not defined in EPSG, and you want to extend the system to
recognize this new coordinate system.

ERDAS IMAGINE
Projection Engine

EPRJ is a very mature projection engine that supports quite a number
of CRSs. EPSG support was recently added to it using a translation
library that converts EPSG codes to their equivalent EPRJ CRS
definitions and vice-versa. This translation from EPRJ to EPSG is used
whenever any data or metadata is requested by WCS GIO decoders for
all the raster formats they support in ERDAS APOLLO.

To extend the system review the following ERDAS IMAGINE projection
configuration files.

• mapprojection.dat

• epsg.plb

• spheroid.tab

• units.dat

• sptable.tab

All of these files are located in this directory:
<APOLLO_HOME>\native\raster\etc\projections

For an explanation of these files, see ERDAS IMAGINE
Projection System Configuration on page 237.

Administrators need to especially understand the epsg.plb file. It is used
as the translation table from EPSG to EPRJ.

Projection Entry File Details

The actual projection entry from the epsg.plb file looks like this:

"NAD83 / Wisconsin Transverse Mercator (3070)" {
 INTERNAL 9 "GRS 1980" "NAD83" 0
 2:9.9960000000000004E-001 4:-
1.5707963267948966E+000

68 Manage Data and Enhance Services

 5:0.0000000000000000E+000
6:5.2000000000000000E+005
 7:-4.4800000000000000E+006 "meters"
}

The following diagram shows the breakdown of the projection entry:

Figure 7: Projection Entry Diagram

Table 2: Projection Entry Translation Table

Name Description

1 Projection Name The name of the projection as it will
be displayed in the metadata
(including quotes).

2 EPSG Code The EPSG code that matches the
EPRJ CRJ

3 Type Type of projection (INTERNAL /
EXTERNAL).

4 Internal Projection Number This projection number should be an
index into the mapprojections.dat
file.

5 Spheroid Your spheroid name (from
spheroid.tab) goes here (including
quotes).

Manage Data and Enhance Services 69

Please note the following:

• The projection specific parameters (#8 in the above table) have
varying degrees of tolerance when EPRJ compares the values
to find the right projection. You must provide enough digits of
precision after the decimal point to have a low tolerance.

• For spheroids:

- The major axis, minor axis, and radius parameters have a
tolerance of 1.0e-05.

- The remaining parameters have a tolerance of 1.0e-09.

• For all datum parameters, the tolerance is 1.0e-09.

• For all EXTERNAL projections and INTERNAL projections (#3
and #4 in the above table) greater than 3:

- Any angular value has a tolerance of 1.0e-12.
- Any linear distance has a tolerance of 1.0e-04.
- Any scale factor has a tolerance of 1.0e-10.
- Any integer value like NADCODE, StatePlane zone, and UTM

zone for instance, the tolerance is 0.1.

• When looking at parameters that represent origin, keep in mind
that EPRJ's internal angular representation is expressed in
radians, not decimal degrees.

6 Datum Your datum name (again from
spheroid.tab) goes here (including
quotes).

7 Zone number This is applicable only to the UTM
and State Plane projections and is
specified in sptable.tab. For
everything else, this should be zero.

8 Projection Specific Parameters The number of parameters varies
with the projection and should match
with the number of parameters in
mapprojections.dat for that particular
projection.

9 Units This should be one of the entries in
units.dat (including quotes).

Table 2: Projection Entry Translation Table

Name Description

70 Manage Data and Enhance Services

ERDAS APOLLO Server defines coordinate reference systems in a
series of XML files. By default, ERDAS APOLLO ships with a significant
number of coordinate reference systems including most of the
nondeprecated EPSG codes. However, it allows you to define
additional coordinate reference systems. The structure and content of
XML files have been extensively documented in the SRS Coordinate
Transformations chapter.

Add an EPSG Code The CRS to add exists in both ERDAS APOLLO Server and EPRJ, but
not in an EPSG-to- EPRJ translation module. This might be because
only a subset of EPRJ is present in the ERDAS IMAGINE EPSG
translation library.

The steps for adding EPSG code support are:

1. Open the epsg.plb file using any text editor.

2. Add the EPSG code you want supported as shown in Projection Entry
File Details above.

3. Save the file and restart the server.

You can now crawl data with this new projection.

NOTE: The dataset might fail to register even after setting the correct
EPSG translation because the projection parameters inside the dataset
don't exactly match the tolerances of comparison for any one
parameter. In that case, please follow the steps below for Defining a
New CRS without Step 3."Add the CRS/projection information to
ERDAS APOLLO Projection Engine".

Define a CRS Defining a new CRS from scratch is more complicated. The
administrator should have a good understanding of the following:

• How to define a CRS and its parameters.

• Future additions to the EPSG dataset, user-defined codes should
be above the EPSG integer code limit of 32,767).

• How to add CRS entries to ERDAS APOLLO Platform system.

For more information, please read carefully the information in the SRS
Coordinate Transformations chapter. Defining a new CRS requires you
to know all the parameters that define a CRS and make changes to the
ERDAS APOLLO projection engine.

Manage Data and Enhance Services 71

If you are changing any of the existing .xml files, it is strongly
suggested that you first back up the original files and keep them in
a safe place.

To add a new CRS to the ERDAS APOLLO Projection Engine, follow
these steps:

1. Stop the JBoss application server.

2. Pick a user-defined EPSG code to use (should be > 32,767) if the CRS
doesn't have any EPSG code.

3. Add the CRS/projection information to the ERDAS APOLLO projection
engine, as follows:
a. Create an XML file to include the new user-defined CRS per the
instructions listed in SRS Configuration Parameters and save it as
usersref.xml.
b. Copy the XML file to:
$JBOSS_HOME\server\default\deploy\erdas-apollo.ear\lib\
cots-srs-xxx.jar\com\ionicsoft\sref\impl\resource
c. Create the folders if they do not already exist. An example of
usersref.xml is:

<?xml version="1.0" encoding="utf-8" ?>
<SREF>
 <PROJCS ID="26767" NAME="NAD27 / Georgia West">
 <UNIT ID="9003" />
 <GEOCS ID="4267" />
 <PROJECTION NAME="Transverse Mercator">
 <PARAMETER NAME="central_meridian" VALUE="-
 84.1666666666666"/>
 <PARAMETER NAME="false_easting"
 VALUE="500000"/>
 <PARAMETER NAME="false_northing"
 VALUE="0.0"/>
 <PARAMETER NAME="latitude_of_origin"
 VALUE="29.999999999999996"/>
 <PARAMETER NAME="scale_factor"
 VALUE="0.9999"/>
 </PROJECTION>
 </PROJCS>
</SREF>

4. Restart the JBoss application server.

5. Create an aggregate with the new EPSG code defined as its CRS.

6. Start a crawler job with this aggregate as the root.

72 Manage Data and Enhance Services

NOTE: All new datasets found by this crawler should now have this new
EPSG code as their CRS. If cataloging fails, make sure that the above
steps are followed correctly and review the changes you made to
determine whether you specified all the parameters that are needed.

If the GIO decoders are the ones configured for this file extension
(in the decoder.txt file), then this solution assumes that they can
recognize the image as referenced but cannot create an EPSG
code. If not recognized as a referenced image by GIO, please
change the decoder to the GDAL and try again.

Filter in a GetMap Filtering functionality is currently supported in the Web Feature Service
(See The Web Feature Service (WFS)). Additional functionality has
been added by ERDAS to allow the use of power filtering to define what
data will be extracted in a request in the context of WMS requests.
ERDAS servlets that publish vector data support WMS GetMap and
WMS GetFeatureInfo requests with an additional "FILTER=<value>"
parameter, where <value> is the XML syntax for the OGC Filter
Encoding 1.0.0 specification. The exact set of Filter operators and
functions available is described in the OGC Filter Encoding 1.0.0
specification. The subset of the specification supported by a given
provider is published in its WFS capabilities document. By extension, a
WMS GetMap or GetFeatureInfo request built on that same service can
use those filters.

Example of Filter Operations Declared in the WFS Capabilities
...
<Filter_Capabilities xmlns="http://www.opengis.net/ogc">
 <Spatial_Capabilities>
 <BBOX/>
 <Equals/>
 <Disjoint/>
 <Intersect/>
 <Touches/>
 <Crosses/>
 <Within/>
 <Contains/>
 <Overlaps/>
 <Beyond/>
 </Spatial_Capabilities>
 <Scalar_Capabilities>
 <Logical_Operators/>
 <Comparison_Operators>
 <Simple_Comparisons/>
 <Like/>
 <Between/>
 <NullCheck/>
 </Comparison_Operators>
 <Arithmetic_Operators>

Manage Data and Enhance Services 73

 <Simple_Arithmetic/>
 <Functions>
 <Function_Names>
 <Function_Name nArgs="1">Upper</Function_Name>
 <Function_Name nArgs="1">Lower</Function_Name>
 <Function_Name nArgs="3">Distance</Function_Name>
 <Function_Name nArgs="1">Score</Function_Name>
 </Function_Names>
 </Functions>
 </Arithmetic_Operators>
 </Scalar_Capabilities>
</Filter_Capabilities>
...

For example, using the "roads" feature type defined in the
BOSTON_SHAPE WFS, a WMS request for a set of road features
where the STREET_NAME contains "Avenue" could contain the
following filter definition:

<ogc:Filter>
 <ogc:PropertyIsLike>
 <ogc:PropertyName>STREET_NAME</ogc:PropertyName>
 <ogc:Literal>Avenue</ogc:Literal>
 </ogc:PropertyIsLike>
</ogc:Filter>

A WMS GetMap request using the filter would look like the example
below. Note that the column-like syntax used below is to make it
readable. The actual syntax to use in a GetMap request would be on a
single line, with '&' as a separator between parameters.

http://localhost:8080/erdas-apollo/vector/BOSTON_SHAPE?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:26986
BBOX=233000.,890000. 235000.,893000.
LAYERS=roads
STYLES=default
FORMAT=image/png
BGCOLOR=0xFFFFFF
TRANSPARENT=TRUE
EXCEPTIONS=application/vnd.ogc.se_xml
FILTER=<ogc:Filter><ogc:PropertyIsLike><ogc:PropertyName>STREET
_NAME</ogc:PropertyName>
<ogc:Literal>River</ogc:Literal></ogc:PropertyIsLike></ogc:Filt
er>

74 Manage Data and Enhance Services

For simple filters, the WMS standardized "Dimension" mechanism
is recommended. (See OGC WMS 1.3.0 specification.)

For complex filters, as the FILTER=<value> mechanism is
proprietary to ERDAS servlets, it is recommended to use the SLD-
based behaviors, as described in the Portrayal Configuration
chapter.

Add User
Functions

You can extend the processing available in ERDAS Vector services by
adding functions called "User Functions". There are two types of
functions that can be added to a WFS.

• A Java class that will apply post-processing on the feature set
extracted from the data source

• A tag that will publish a datasource procedure or function so that it
can be explicitly requested by the user. Generally, it is used for
Oracle-based providers in which the WFS calls an Oracle PL/SQL
function at the data extraction stage of the query

Add a Java class
Function

The steps needed to add a Java class for post-processing are detailed
below. They are based on a sample function named SummaryFunction
which role is to truncate a text field when the length of the field is greater
than a given threshold.

The ERDAS APOLLO distribution providers a couple of Java
functions (package com.ionicsoft.wfs.function). The first one is
called GeneralizeFunction and is able to generalize a given
geometry (to reduce the number of coordinates). The second one
is called UpperFunction and is able to convert a String property in
uppercase.

Java functions are currently applicable only to provider types
exposing a ResultSet-type structure (Oracle, PostgreSQL, SQL
Server, ArcSDE). The AST-tree providers (such as the Shapefile
provider) do not support Java functions.

1. The first thing to do is to develop a Java class according to the following
guidelines:

Manage Data and Enhance Services 75

• If the function does not require parameters, provide the default
constructor

public SummaryFunction()
{
 m_length=10;
}

• If the function requires parameters, it is possible to provide
constructors of the form <constructor>(type1 P1, type2 P2....). An
example could be:

public AnotherFunction(String target, int length)
{
 this.m_target=target;
 this.m_length=length;
}

• Create a set of "evaluate" methods. Each evaluate methods must
be of the form: ResultType evaluate (type1 P1, type2 P2...), where
ResultType can be Object, a simple type or a GeometryType. The
parameters types must be a simple type, a simple object type or a
geometry type. A simple type is a int, double ... and a simple object
type is Integer, Double, String, Date,

²
public String evaluate(String target)
{
 return evaluate(target,m_length);
}

²
public String evaluate(String target, int length)
{
 if(target.length()>length)
 {
 return target.substring(0,length)+"...";
 }
 else
 {
 return target;
 }
}

2. Once you have coded your function, you have to compile the class and
copy the generated class file in the classpath of the WFS service (i.e.
by adding the class in the <APOLLO_HOME>/webapps/erdas-
apollo/webapp/WEB-INF/classes directory) and rebuild the webapp
with the ant command in the <APOLLO_HOME>/webapps/erdas-
apollo.

76 Manage Data and Enhance Services

3. The last step is to declare the function in the providers.fac file and the
end of the Configuration tag:

<CONFIGURATION>

.......

<REGFUNC ID="Generalize"
JCLASS="com.ionicsoft.wfs.function.GeneralizeFunction" />

<REGFUNC ID="Summary"
JCLASS="com.ionicsoft.test.wfs.functions.SummaryFunction">

<PARAM NAME="length" VALUE="5" />
</REGFUNC>

</CONFIGURATION>

4. The Java functions can be used in GetFeature requests, but only in the
set of output PropertyName tags. They cannot be used in the Filter
clause, as they do apply to the feature set after it is extracted from the
data source. Moreover, they do not appear in the WFS capabilities
document.

Add a Datasource
Function

A datasource function is the second way to add processing capabilities
to a WFS.

1. In case of an Oracle provider, the example consists in adding an Oracle
PL/SQL function to the WFS. The function has the same purpose as the
SummaryFunction Java class. Its PL/SQL equivalent can be:

create or replace function summarize(target varchar2)
return varchar2 is
begin
 if length(target)>5
 then
 return substr(target,0,5)||'...';
 else
 return target;
 end if;
end;
/

2. A "UserFunction" tag has to be added in the mapping file in order to
map the PL/SQL function with a WFS Function name (it will appear in
the WFS capabilities), and to describe the parameters and return type.
For the "summarize" procedure, the function is declared as taking a
String as single argument and returns a String. The mapping tags can
be:

<UserFunction name="Summarize" nameSQL="summarize">
 <Parameter type="string" />
 <Return type="string" />
</UserFunction>
<Mapping>

Manage Data and Enhance Services 77

 <SQL name="wfs:roads">
...

This tags add a "Summarize" function to the WFS functions list
available in the WFS capabilities:

<Functions>

 <Function_Names>

 <Function_Name nArgs="1">Upper</Function_Name>

 <Function_Name nArgs="1">Lower</Function_Name>

 <Function_Name nArgs="3">Distance</Function_Name>

 <Function_Name nArgs="1">Score</Function_Name>

 <Function_Name nArgs="1">Summarize</Function_Name>

 </Function_Names>

</Functions>

3. Now you can perform the following WFS query:

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"

xmlns:ogcwfs="http://www.opengis.net/wfs"
 version="1.0.0" service="WFS" >
 <ogcwfs:Query typeName="roads">
 <ogc:PropertyName>STREETNAME
 <ogc:Function name="Summarize">
 <ogc:PropertyName>STREETNAME</ogc:PropertyName>
 </ogc:Function>
 </ogc:PropertyName>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

The resulting FeatureCollection contains truncated property values:

<wfs:STREETNAME>MARIET...</wfs:STREETNAME>

Instead of:

<wfs:STREETNAME>MARIETTA BLVD</wfs:STREETNAME>

78 Manage Data and Enhance Services

You can also performs filtering using the user functions:

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 version="1.0.0"
 service="WFS" >
 <ogcwfs:Query typeName="roads">
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:Function name="Summarize">
 <ogc:PropertyName>STREETNAME</ogc:PropertyName>
 </ogc:Function>
 <ogc:Literal>MARIET...</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

The WFS follows two rules in order to find User Functions:

• It first searches a Java function declared in REGFUNC tags, based
on the parameter count and names.

• Then it searches for a data source function based on the name, in
UserFunction tags in the mapping file.

The Java functions do not appear in the WFS capabilities and
cannot be use in the <Filter> part of a GetFeature request. The
data source functions appear in the capabilities and can serve in a
Filter.

Set Up a WFS with
GML2 Objects

This section describes the general way of setting up a Web Feature
Server based on the GML 2.1 application schema. It automatically
exposes the data stored in Oracle as a WFS 1.1.0, and it opens the door
to defining schemas using one or more of the new GML2 types. ERDAS
APOLLO supports some of those types and this section explains how
to set up and query such a WFS for the new GML2 geometries,
Measurements and Units, and for Temporal operations.

You must install ERDAS APOLLO and services must be accessible via
the http://myhost:80 URL.

Steps to build an Oracle WFS on top of those sample GML2 data:

Manage Data and Enhance Services 79

1. Initialize the Oracle data set using the files in
<APOLLO_HOME>/data/erdas-apollo/db/oracle/satellite.

2. Run the createoracle.sql SQL script to create the table and indexes.

3. Launch the ERDAS APOLLO Data Manager and log in with the default
admin/apollo123 username and password.

4. Right-click on the vectors node and choose Create service.

5. In the Service Creation Wizard panel, select Vector data as the service
type and Database as the data source type. Click Next.

6. Select Oracle service as the service type. Click Next.

7. Choose the same database connection parameters as those used in
step 1. host, port, user, password, SID,... . The default SRS value of
"EPSG:4326" is the right one. Click Next.

8. In the Select the main service properties panel, enter "GML3EXT" as
service name and "GML3 Satellite" as Abstract and Title, then click
Next.

9. In the next panel, uncheck the Generate Types and Mapping box.
After a few seconds, a new WFS service called GML3EXT is added
under the Vector tree node. Also, an error message displays because
the service does not yet have the appropriate settings; this is normal.

10. Right click on the node name and choose Edit Provider. The right pane
of the Data Manager displays the properties of the newly created
service.

11. Select the Data Source tab. For the Mapping File property, enter
satellite.xml.

12. In the Types Schema field, enter "satellite.xsd". As those two files exist
and are beside the main configuration file, they will be used. Save your
changes, and answer Yes to "Do you want to save your modification to
a catalog?".

13. Click the Get Capabilities link to see the Capabilities document (if you
see some kind of error please go back and check all of your input
parameters and retry).

Insert Data into the
Provider

As soon as the provider is up and running, you can use the WFS Loader
tool to insert data into the provider. More detail on that tool is given in
ERDAS APOLLO Tools and Viewers. Follow these steps to insert the
data using that tool.

80 Manage Data and Enhance Services

1. Copy the whole set of xml files found in
<APOLLO_HOME>/data/erdas-apollo/db/oracle/satellite into
the <APOLLO_HOME>/tools/ows directory.

2. Execute runwfsloader ./gml3.xml for the script to execute. It will
produce a gml3log0 file which contains the log of your operation. If that
file does not contain any "Exception" word and if the table contains 140
records, the inserts succeeded. If not, check the messages in the
gml3log0 file.

The service is now ready to serve the various GML3 objects. The
following sub-sections describe how to use them.

Curves, Surfaces, Rings Using the previously created provider (GML3EXT), it is now possible to
use the GML application schema for GML3 geometries, and to query
them using spatial operators.

First, you can notice that the schema publishes, for the "satellite"
feature type, a "GEOMETRY" property with type
"gml:GeometryAssociationType". This type is a generic one, because
the inserted geometries are of various types. Executing a GetFeature
on the service or viewing the various <geometry>-request.xml files
used to insert them shows the variety of geometry types inserted,
namely:

• ARC SEGMENT, having the GML3 structure: Curve/segments/Arc
(with 3 coordinates)

• MULTIPLEARCSEGMENT, having the GML3 structure:
Curve/segments/Arc (one or more, with three coordinates)

• POLYGON, having the GML3 structure:
Surface/patches/PolygonPatch/exterior(or interior)/LinearRing (one
or more)

• TRIANGLE, having the GML3 structure:
Surface/patches/Triangle/exterior/LinearRing (with four points)

• RECTANGLE, having the GML3 structure:
Surface/patches/Rectangle/exterior/LinearRing (with five points)

• RING, having the GML3 structure: Ring/curveMember (one or
more)/Curve/segments/Arc (with three coordinates)

• CIRCLERING, having the GML3 structure:
Ring/curveMember/Curve/segments/Circle (with three coordinates)

Manage Data and Enhance Services 81

To restrict the set of geometry types accepted by your feature type,
change its declared type from gml:GeometryAssociationType to one,
more explicit, among: gml:CurvePropertyType,
gml:SurfacePropertyType and gml:RingPropertyType.

You can also use GML3 geometries in your GetFeature requests, like
in the example below.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="200"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 xmlns:wfs="http://www.ionicsoft.com/wfs"
 xmlns:gml="http://www.opengis.net/gml"
 version="1.1.0"
 service="WFS" >
 <ogcwfs:Query typeName="wfs:satellite">
 <ogc:Filter>
 <ogc:Intersects>
 <ogc:PropertyName>GEOMETRY</ogc:PropertyName>
 <gml:Surface>
 <gml:patches>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing>
 <gml:pos>-165.0 -33.0</gml:pos>
 <gml:pos>-127.0 -55.0</gml:pos>
 <gml:pos>172.0 62.0</gml:pos>
 <gml:pos>-165.0 -33.0</gml:pos>
 </gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 </gml:patches>
 </gml:Surface>
 </ogc:Intersects>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

Measurements, Units of
Measure

Using the same provider (GML3EXT) as in the previous example, we
can manage units of measures and measurements.

In the example, the "TEMPERATURE" property is of gml:MeasureType
type. It has a value and a "uom" attribute (Unit Of Measure). The unit
value is taken from one or more dictionaries of units. ERDAS APOLLO
WFS comes with a set of predefined units, namely Angles in Degrees
(deg), Angles in Grads (grad), Angles in Radians (rad), Distance in
Kilometers (Km), in Meters (m), in Centimeter (cm), in Millimeter (mm)
and in Inches (in). If you want to define additional units, either new Basic
ones or others based on an existing one, you need to create an XML
document to hold that definition, and reference that document in your
mapping file.

82 Manage Data and Enhance Services

Besides the WFS providers.fac available in the distribution, you will find
a units.xml file, which declares the Celsius (symbol "Cel") temperature
unit as a Base unit, and the Fahrenheit (symbol "Far") temperature unit
in relation with the Celsius one. The file is a valid dictionary in the sense
of the GML3 Units Dictionary specification (chapter 16 of OGC GML
3.1.0 Specification).

In order for your TEMPERATURE property type to be linked with those
unit definitions, you first need to add, in the satellite.xml mapping file, a
reference to the units XML document. It is done by adding the line:

<UnitDefinition>units.xml</UnitDefinition>

Then, you declare the association between your feature type, its
property and the default unit. It is done either by adding a "measure"
attribute to the <Element>, or by adding the line:

<UnitAssociation type="wfs:satellite" name="TEMPERATURE"
measure="Cel"/>

In the mapping file the association has to be declared AFTER the
unit and the property are known. We recommend the
<UnitAssociation> element to be set at the end of the mapping file.

Having done so, each time a request or an insert is done for that
property, the system will check the "uom" given in the query, and will
possibly convert the value to the default one if different.

For a GetFeature, the GML output will display the TEMPERATURE
property as:

<wfs:TEMPERATURE uom="Cel">67.17497699418969</wfs:TEMPERATURE>

For an Insert transaction or a GetFeature using that property in a filter,
the uom given will be taken into account. We will build an example
request to obtain the count of features for which the Celsius
temperature is greater than 0. We can write it easily, and the response
will give 120 features. But as the internal unit is Celsius, it does not
illustrate unit conversion. So, we will change the request so that the
requested temperature is given as 32 degrees Fahrenheit, which
corresponds to 0 degree Celsius. The query is shown below, and you
can verify that the response is 120, like before.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="1000"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 version="1.1.0" service="WFS"

Manage Data and Enhance Services 83

 resultType="hits" >
 <ogcwfs:Query typeName="satellite">
 <ogc:PropertyName>TEMPERATURE</ogc:PropertyName>
 <ogc:Filter>
 <ogc:PropertyIsGreaterThan>
 <ogc:PropertyName>TEMPERATURE</ogc:PropertyName>
 <ogc:Literal uom="Far">32</ogc:Literal>
 </ogc:PropertyIsGreaterThan>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

Temporal Properties and
Operators

Using the same provider (GML3EXT) as in the previous example, we
can manage temporal properties and operators.

The example feature type contains several properties, intended to
illustrate both the gml:TimeInstant and the gml:TimePeriod types
defined in GML3. The LAUNCHDATE property is a TimeInstant, and
ACTIVITY is a TimePeriod. They have been created and populated
during the initialization phase. The LAUNCHDATE property does not
need any particular configuration except defining the proper property
type in the schema, i.e. gml:TimeInstantPropertyType.

For the ACTIVITY property, you also need to define it in the schema, as
gml:TimePeriodPropertyType. You also need to map the property with
a couple of columns in the database, one for the begin time position and
one for the end time position, both being a DATE column type. This is
done in the mapping file by configuring it like below:

<Element name="ACTIVITY" nameSQL="BEGINACTIVITY"
nameSQLCol2="ENDACTIVITY" />

To help you query your WFS, ERDAS APOLLO implemented the
operators as defined in the OGC Change Request document "Filter
Encoding Change Request CR 05-093 dated 12/10/2005": Before,
After, Begins, Ends, During, TEquals, TContains, TOverlaps, Meets,
OverlappedBy, MetBy, BegunBy, EndedBy.

The CR 05-093 change request is a proposal, not a voted
specification. The set of operator names is subject to change
without prior notice. ERDAS supports those operators as part of
ERDAS APOLLO 2009, but is likely to align to changes and
deprecate those names.

The request below searches for the satellites launched after end 2006.

84 Manage Data and Enhance Services

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 xmlns:iwfs="http://www.ionicsoft.com/wfs"
 version="1.1.0"
 service="WFS" >
 <ogcwfs:Query typeName="iwfs:satellite">
 <ogc:Filter>
 <ogc:After>
 <ogc:PropertyName>iwfs:LAUNCHDATE</ogc:PropertyName>
 <gml:TimeInstant>
 <gml:timePosition>2006-12-
31T00:00:00Z</gml:timePosition>
 </gml:TimeInstant>
 </ogc:After>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

The following example searches for satellites which activity will start on
8th November 2006 and end before 9th November 2007.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 xmlns:iwfs="http://www.ionicsoft.com/wfs"
 version="1.1.0"
 service="WFS" >
 <ogcwfs:Query typeName="iwfs:satellite">
 <ogc:Filter>
 <ogc:Begins>
 <ogc:PropertyName>iwfs:ACTIVITY</ogc:PropertyName>
 <gml:TimePeriod>
 <gml:beginPosition>2006-11-08T08:26:12Z</gml:beginPosition>
 <gml:endPosition>2007-11-09</gml:endPosition>
 </gml:TimePeriod>
 </ogc:Begins>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

Supported Constructs

TimeInstant currently only supports the ISO 8601 frame, plus the
indeterminate positions "now" and "unknown". The calendar era name
is not used (the default Gregorian calendar is used).

The TimePeriod type contains five subproperties: begin, beginPosition,
end, endPosition, timeLength. The following combinations of
subproperties are valid:

Manage Data and Enhance Services 85

• begin, end, timeLength - timeLength is ignored

• begin, endPosition, timeLength - timeLength is ignored

• begin, timeLength -

• beginPosition, end, timeLength - timeLength is ignored

• beginPostion, endPosition, timeLength - timeLength is ignored

• beginPosition, timeLength -

86 Manage Data and Enhance Services

Portrayal Capabilities 87

Portrayal Capabilities

Data Portrayal Portrayal is the use of rules to display and convert data such as GML,
coverages or custom data sources, JDBC result sets, COM objects, into
an image or formatted text document. For Web Application developers
using OGC interfaces, data is accessed through a WFS or WCS. The
ERDAS APOLLO Portrayal Engine transforms a collection of features
or coverages into the required output format. Output formats can be
vector format (SVG), image formats (GIF, JPEG, PNG, WBMP and,
GeoTIFF) or even textual formats (text, HTML, XML and, PDF). The
ERDAS APOLLO Portrayal Engine uses server-side rules to portray
information. These rules can be expressed in several languages:
Property, SLD and Java.

The current release of ERDAS APOLLO includes the ERDAS APOLLO
Style Editor tool. ERDAS APOLLO Style Editor provides the ability to
style data using ERDAS predefined rules. ERDAS APOLLO Style
Editor can be used to portray data using these predefined styles and
rules or using custom designed ones. Custom rules can be written
using the Portrayal API.

Rules and Styles Portrayal rules and styles are two distinct concepts. Each entity
provides a different level of service but both are needed to portray data.
Rules are pieces of program code that provide a specific way to portray
data using a classification scheme, i.e., classes representing a numeric
attribute. Styles are text files that contain parameters defining how to
portray a dataset. For example, a Style will define which field the
ERDAS APOLLO Portrayal Engine will classify and what fill color and
stroke width to use.

Rules, the Portraying
Logic

Rules define the behavior to be used when portraying any kind of
compatible feature or coverage collection. They are written once and
used as many times as requested on as many different data sets as
required.

A rule resides in a Java class written using the ERDAS API and is
dedicated to render a defined kind of data, feature and coverage
collections. A rule may also use a property or SLD file which is called a
style. The Java code may be either generic to allow the rule to be used
with as many feature or coverage types as possible or written to portray
a specific feature or coverage collection in a more efficient way. The
ERDAS APOLLO product provides a set of generic rules to be used with
any kind of features. More specific rules may be written using the
developer version of this product, ERDAS APOLLO Solution Toolkit™.
Developing new portrayal rules requires advanced Java knowledge.

88 Portrayal Capabilities

The provided rules have been extensively tested and optimized to
provide open and powerful portraying of any feature collection. Rules
also support advanced logic such as generalization, classification, and
new feature creation to render an updated feature collection.

Styles, Definition of the
Look and Feel

Styles are collections of parameters that are used by a rule to render a
specific set of data in a predefined way. They are different for each set
of data and are only used by the specified data set.

A style defines set parameters to portray data using a selected rule and
the properties for use in labeling and classifying and, to select a
geometry to render, colors for fill, what stroke to use and what band to
display. Styles are tied to the data being styled as well as to the rule it
uses. Styles do not include any kind of logic and do not handle
performance issues. These issues are addressed during the rules
development process. The styling process only focuses on portraying
the data.

To simplify the process of building styles, ERDAS APOLLO provides a
tool called ERDAS APOLLO Style Editor which can define, preview and
deploy styles. See Output Formats and The ERDAS APOLLO Style
Editor for more information.

Creating Maps ERDAS APOLLO Style Editor is a Java-based GUI tool that can be
used to create, edit, preview and deploy styles. It contains a range of
styling functionality that allows the user to style data quickly and easily.
The ERDAS APOLLO Style Editor is tightly bound to the prebuilt style
templates.

Styles Templates
Description

To facilitate the styling of data, ERDAS APOLLO™ includes a set of
prebuilt rules referred to as Style Templates. The style templates
provided with the ERDAS APOLLO Style Editor may fulfill most
rendering requirements, including classification and generalization.
However, more templates can be built using ERDAS APOLLO Solution
Toolkit™. Please contact ERDAS Support if more information about
building new templates is needed.

The style templates available in ERDAS APOLLO™ include the
following:

• Uniform: This template applies a simple style to every feature. The
stroke, fill and symbol can be configured for the entire feature
collection and any property of the feature can be used for labeling.

• Known Symbol: This template applies a fast-to-render marker from
a fixed, predefined set to the centroid of each feature. A property of
the feature can be used for labeling.

http://www.erdas.com/Support

Portrayal Capabilities 89

• Uniform Roads: This is a style template dedicated to the display
and portrayal of various types of roads. The ERDAS APOLLO Style
Editor allows custom configuration of the outline, fill color, and
center line to line or polyline geometry. Road can be labeled with
any property of the feature.

• Range Classification: This style is used to classify numeric data,
ranked data (to show a progression of values), or to represent
percentages.

• Discrete Classification: This style template should be used to
symbolize categorical data. Data values where the symbol for one
value is no more or less prominent than the symbols for another
value. It also handles lines and polygons stroke and fill color
variations as well as line/outline width.

• Range Road Classification: A style is attached to a range of
values of a property for the classification of nondiscrete data.
Values must be numeric.

• Discrete Road Classification: This style template is used to
render roads with a discrete classification that affects outline and
centerline colors.

• HTML Report Fragment: This style template allows the rendering
of a feature collection into an HTML fragment. A subtitle can be
added that will appear in the output for this feature type.

• Variable Markers: This style template marks features with scaled
and optionally rotated symbols. The size and orientation are
determined using one of the properties of the feature.

• Patterner: This styling rule fills polygons with patterned
backgrounds.

• Feature Numberer: This styling rule marks the features that are the
nearest from the map center with sequential numbers.

• Symbol Roller: This styling rule renders linear geometries by
stamping a list of symbols along the curve in a cyclic manner.

• Coverage Style: This is the only template applying to coverages. It
permits choosing the channels, the colormap and the contrast
operation.

90 Portrayal Capabilities

Creating Styles Two styling languages are available in this version of the ERDAS
APOLLO™, Property and SLD. ERDAS APOLLO Solution Toolkit™
allows users to plug custom styling rules into the ERDAS APOLLO
Portrayal Engine and/or create their own styling mechanisms.

Languages

Property

The "Property" language is a simple, key/value-based styling language
that defines both the rule to load in the ERDAS APOLLO Portrayal
Engine and the parameters to apply during the portrayal of the feature
collection.

Styles based on the Property language are typically created and
modified using ERDAS APOLLO Style Editor. Since the set of available
properties depends on the rule chosen, ERDAS APOLLO Style Editor™
offers a user-friendly, self-documenting way of setting the
corresponding values.

This language cannot be used to create styles that apply to coverages.
That is handled by the SLD language.

SLD

The OpenGIS Styled Layer Descriptor (SLD) is a powerful XML-based
styling language. While the complete SLD mechanism is intended for
WMS requests, the ERDAS APOLLO Portrayal Engine contained in this
product is able to style specific feature types and coverages using a
subset of the SLD tags.

For more information about SLD, see the Styled Layer Descriptor
document in the Implementation Specifications section of the
OpenGIS website. This document contains a complete description of
the SLD 1.0 language and the graphical results produced by the various
styling constructs.

Currently Supported SLD Tags

The following list is a reference for style developers. Depending on
whether the SLD document is provided in a GetMap request to a vector
data server (APOLLO vector servlet), a SLD Portray provider
addressing a WFS, a SLD Portray provider addressing a WCS (also
named a Coverage Portray service), or a Coverage Server, this list of
supported SLD tags varies. Moreover, the following list marks the tags
that are new to ERDAS APOLLO.

Notation:

http://www.opengeospatial.org/standards/sld

Portrayal Capabilities 91

• "10.0": label used for tags new in ERDAS APOLLO 10.0

• "VP": for tags supported in the vector providers

• "PP": for tags supported in the SLD Portray provider on top of a
WFS

• "CP": for tags supported by the SLD Portray provider on top of a
WCS or in a Web Coverage Server

• "ignored": the element does not produce an error and thus, has no
apparent behavior.

Table 3: Supported SLD Tags

Tag Name Parent Element Supporting version/provider

NamedLayer StyledLayerDescriptor VP

UserLayer StyledLayerDescriptor PP

Name, Title, Abstract StyledLayerDescriptor ignored

@version StyledLayerDescriptor defaults to "1.0.0"

Name NamedLayer VP

LayerFeatureConstraints NamedLayer ignored

NamedStyle NamedLayer VP

UserStyle NamedLayer VP

Name NamedStyle VP,PP

Name UserLayer PP,CP

RemoteOWS UserLayer PP,CP

LayerFeatureConstraints UserLayer PP

LayerCoverageConstraints UserLayer CP

UserStyle UserLayer PP,CP

Service RemoteOWS "WFS" or "WCS"

OnlineResource RemoteOWS PP - "&" must be written "&" (i.e. xml
encoding)

FeatureTypeConstraint LayerFeatureConstraints PP

CoverageConstraint LayerCoverageConstraints CP

FeatureTypeName FeatureTypeConstraint PP

Filter FeatureTypeConstraint PP

92 Portrayal Capabilities

Extent FeatureTypeConstraint ignored

CoverageName CoverageConstraint CP

Extent CoverageConstraint CP (to be deprecated. Use
CoverageExtent instead)

CoverageExtent CoverageConstraint CP

TimePeriod Extent/CoverageExtent CP

RangeAxis Extent/CoverageExtent CP

Name UserStyle ignored: mapped with the STYLES
parameter of the GetMap request

Title, Abstract, IsDefault UserStyle ignored

FeatureTypeStyle UserStyle Rendered sequentially (last on top)

CoverageStyle UserStyle CP

Name, Title, Abstract FeatureTypeStyle ignored

FeatureTypeName FeatureTypeStyle Useless if the UserLayer has 1! feature
type

SemanticTypeIdentifier FeatureTypeStyle ignored

Rule FeatureTypeStyle Rendered sequentially (last on top)

Rule CoverageStyle CP

Name Rule VP

Title, Abstract Rule ignored

LegendGraphic Rule ignored

Filter Rule 1.0: parameters are supported and can be
expressions

ElseFilter Rule VP,PP

MinScaleDenominator,
MaxScaleDenominator

Rule 1.0

RasterSymbolizer Rule CP

*Symbolizer (except Raster) Rule VP,PP

Geometry *Symbolizer VP,PP - can be omitted if only one in the
feature type.

Stroke LineSymbolizer VP,PP

PropertyName Geometry VP,PP

Table 3: Supported SLD Tags (Continued)

Tag Name Parent Element Supporting version/provider

Portrayal Capabilities 93

CssParameter Stroke VP,PP

ParameterValueType CssParameter VP,PP

expression ParameterValueType VP,PP

Graphic GraphicFill 1.0

Fill PolygonSymbolizer VP,PP

Stroke PolygonSymbolizer VP,PP

GraphicFill Fill 1.0

CssParameter Fill VP,PP

Graphic PointSymbolizer VP,PP

ExternalGraphic Graphic 1.0

Mark Graphic VP,PP

Opacity Graphic CP

Size Graphic 1.0

Rotation Graphic 1.0

OnlineResource ExternalGraphic 1.0

Format ExternalGraphic 1.0

WellKnownName Mark VP,PP

Fill Mark VP,PP

Stroke Mark VP,PP

Label TextSymbolizer VP,PP

Font TextSymbolizer VP,PP

LabelPlacement TextSymbolizer VP,PP

Halo TextSymbolizer ignored

Fill TextSymbolizer VP,PP

CssParameter Font VP,PP

PointPlacement LabelPlacement at the centroid of the geometry

LinePlacement LabelPlacement ignored

AnchorPoint PointPlacement ignored

Displacement PointPlacement VP,PP

Rotation PointPlacement VP,PP

Table 3: Supported SLD Tags (Continued)

Tag Name Parent Element Supporting version/provider

94 Portrayal Capabilities

Notes:

• The NamedStyle is processed as a style name.

• The Filter in a Rule element is ignored if it applies to a feature
property that does not exist. It is important to ensure the proper
handling of syntax errors in property names.

• Globally, the Title and Abstract tags have no effect, as they only
make sense when SLD content is published by a server.

• Default SLD version is "1.0.0".

• The LAYERS parameter must be mentioned in the GetMap request
to an ERDAS WMS even when the SLD tag is used. Among the
layers found in the SLD, only those found in the LAYERS parameter
are rendered. This restriction does not apply to the Portray Provider
or to the CPS.

• Unknown CssParameters do not produce an error message. A
CssParameter can be specified multiple times overriding the values
previously set.

DisplacementX,
DisplacementY

Displacement VP,PP

ChannelSelection RasterSymbolizer CP

ContrastEnhancement RasterSymbolizer CP

ColorMap RasterSymbolizer CP

ShadedRelief RasterSymbolizer CP

ReliefFactor ShadedRelief CP

RedChannel, Green, Blue,
Gray

ChannelSelection CP

SourceChannelName RedChannel, Green, Blue,
Gray

CP

Normalize ContrastEnhancement CP

Histogram ContrastEnhancement CP

ColorMapEntry ColorMap CP

@color ColorMapEntry CP

@quantity ColorMapEntry CP

Table 3: Supported SLD Tags (Continued)

Tag Name Parent Element Supporting version/provider

Portrayal Capabilities 95

• In Text Symbolizers, text anti-aliasing is enabled by default.

Parsing:

The SLD parsing is lenient. If the file is not a valid XML document, the
parser will detect an error. If it does not conform to the SLD DTD , the
parser will try to extract the most valuable information and continue
processing.

Example:Sample SLD Style

<StyledLayerDescriptor version="1.0.0"
 xmlns:ogc="http://www.opengis.net/ogc" >
 <NamedLayer>
 <Name>ESA_FIRE</Name>
 <UserStyle>
 <Name>MyStyle></Name>
 <FeatureTypeStyle>
 <FeatureTypeName>ESA_FIRE</FeatureTypeName>
 <Rule>
 <PointSymbolizer>
 <Geometry>
 <ogc:PropertyName>Geometry</ogc:PropertyName>
 </Geometry>
 <Graphic>
 <Mark>
 <WellKnownName>square</WellKnownName>
 <Fill>
 <CssParameter name="fill">#ffff00</CssParameter>
 <CssParameter name="fill-opacity">1.0</CssParameter>
 </Fill>
 <Stroke>
 <CssParameter name="stroke">#0000ff</CssParameter>
 <CssParameter name="stroke-width">2.0px</CssParameter>
 </Stroke>
 </Mark>
 <Size>20.0</Size>
 </Graphic>
 </PointSymbolizer>
 <TextSymbolizer>
 <Geometry>
 <ogc:PropertyName>Geometry</ogc:PropertyName>
 </Geometry>
 <Label>
 <ogc:Add>
 <ogc:PropertyName>LONG</ogc:PropertyName>
 <ogc:Literal>10</ogc:Literal>
 </ogc:Add>
 </Label>

 <CssParameter name="font-family">Arial</CssParameter>
 <CssParameter name="font-size">12.0</CssParameter>

 <LabelPlacement>
 <PointPlacement>
 <Displacement>

96 Portrayal Capabilities

 <DisplacementX>0</DisplacementX>
 <DisplacementY>0</DisplacementY>
 </Displacement>
 </PointPlacement>
 </LabelPlacement>
 </TextSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Deploying Styles The ERDAS APOLLO Portrayal Engine locates the styles to use for
portraying features or coverages in a directory hierarchy whose root is
defined in the providers.fac file.

Example of Portrayal Root Directory Setting

<CONFIGURATION>
...
 <STYLE DIR="C:/Erdas/ApolloServer/config/erdas-
apollo/rendering/" />
</CONFIGURATION>

For ease of manipulation, the contents of that directory hierarchy can
be packaged in a Grid Archive (GAR).

The styles generated by the ERDAS APOLLO Style Editor tool are
packaged in archives that should then be copied in the Style directory.
The default installation directory setting is
<APOLLO_HOME>/config/erdas-apollo/rendering for vector and
coverage styling.

If an appropriate style was not found in that directory hierarchy, the
ERDAS APOLLO Portrayal Engine will successively look for one in a
global library directory and then in each of the locations specified in the
servlet-engine CLASSPATH variable. This cascading behavior permits
the sharing of style libraries between multiple applications or providers.

Portrayal Capabilities 97

Provider-Specific Styles

If WFS/WMS provider-specific styles are defined, an additional level of
directories with names corresponding to the provider can be created
under the root of the hierarchy, for example,
<APOLLO_HOME>/config/erdas-apollo/rendering/atlanta_vector,
where ATLANTA_VECTOR is the provider name. If such a directory
exists, the corresponding provider will search there first for styles
corresponding to the retrieved features. This is the easiest way to
ensure that no feature type name conflict will arise between multiple
providers.

Note that in the current ERDAS APOLLO release, provider-specific
styles cannot be created for WCS/WMS.

Deployment Structure

Styles

In each style directory, styles are searched in a path structure
composed by successively appending the lowercased collection
keyword, the feature type or coverage offering name and then the style
name. The style filenames are composed of a target format, SVG for
SVG and raster formats and HTML for HTML, etc., and an extension
corresponding to the language used .prop for property styles and .sld
for SLD fragments.

For example, a WMS request for the portrayal of the Buildings feature
type/layer with the outline style in PNG format will either use the
collection/buildings/outline/SVG.prop or the
collection/buildings/outline/SVG.sld style.

A particular style, named "default", is used if no style is mentioned
in the request. The directory name for that style must be named
"defaultstyle" if it applies to features but not for coverages. For
example, the "default" style for rendering the "Buildings" layer in
PNG is collection/buildings/defaultstyle/SVG.prop .

Symbols

When a style contains a reference to a symbol, the path searched is
composed by successively appending the symbol keyword, the symbol
library name and the symbol filename.

The ERDAS APOLLO Portrayal Engine libraries can contain symbols in
a variety of raster formats, GIF, PNG, etc. as well as SVG and
TrueType.

98 Portrayal Capabilities

An example of a Property style referencing a TrueType font used as
symbol is included in the distribution, and can be invoked through the
ATLANTA_VECTOR WFS provider, using the place_names layer with
the "truetype" style. The font set is symbol/lib/hanshand.ttf .

Using the Map
Dressing Service

The Map Dressing Service is used for placing common map production
elements, i.e., north arrow, scale bar, grid, is included in the product and
appears as a provider in the WMS servlet. This service is preconfigured
at installation and is automatically activated. The service can be
invoked using the following URL:

http://localhost:8080/erdas-
apollo/map/MAPDRESSING?service=WMS&version=1.1.1&reque
st=GetCapabilities

This request provides a set of available layers, predefined styles for
each layer, and additional "Dimensions" that allow for flexibility in the
output. Below is a description of the styles and dimensions for each
layer of the Map Dressing Service. For more detail on how to configure
this service, please refer to Provider Types.

Grid The grid is a map element used for registering the positions of data to
uniform intervals. A grid is based on defined subdivision levels of the
page units, i.e., inches, centimeters.

Two styles are defined that determine the units in which the grid is
displayed and labeled.

• currentsrs - Displays the grid in the SRS unit of the request

• wgs84 - Displays the grid in WGS84 (EPSG:4326) that is the default
SRS defined by OGC standards.

Additional parameters can be included in a request to customize the
appearance of the grid line and the properties of the labels. By default,
the interval of the grid is automatically calculated using the units of the
SRS, to best fit the display window. However, the parameter "gridstep"
can be added to a WMS request to customize this measure.

• gridstep - Step of the grid, in the request SRS unit

By default, the grid is composed of a set of horizontal and vertical lines
crossing the entire map. This can be modified to display small crosses
or "crosshairs" at the intersection of those lines. This is done with the
optional parameter "gridcrosses" that is set to "false" by default.

• gridcrosses - Display small crosses instead of lines

Portrayal Capabilities 99

The grid lines have a predefined stroke (black) and width (0.5 pixels).
Using one or both of the "gridlinecolor" and "gridlinewidth" parameters
in a request allows for custom values for those properties.

• gridlinecolor - Color of the grid using RGB values or a color
name i.e., blue

• gridlinewidth - Width of the grid in pixels

The grid labels are texts displayed on the grid lines. The properties of
those labels can be modified using additional parameters: label font
name, font style, font size, color, and a halo around the text.

• labelfontface - Font name to use. The default is "Helvetica"

• labelfontstyle - Style to use to display the label, normal, italic,
bold and bolditalic

• labelfontsize - The size of the text

• labelfontcolor - The stroke of the text

• labelhalo - Set to "true" for halo, "False" is the default

An additional property "fullGrid", can be used to display the labels
at each intersection of the grid. This parameter cannot be used in
a request. The property must be set in the portrayal style using
"fullGrid = true" or "fullGrid = false".

An example of a GetMap request with Grid parameters:

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:4326
BBOX=10,10,90,90
LAYERS=grid
STYLES=currentsrs
FORMAT=image/png
BGCOLOR=0xFFFFFF
TRANSPARENT=TRUE
EXCEPTIONS=application/vnd.ogc.se_xml
DIM_GRIDSTEP=4
DIM_GRIDLINECOLOR=blue
DIM_GRIDLINEWIDTH=5
DIM_LABELHALO=FALSE
DIM_LABELFONTFACE=Arial
DIM_LABELFONTSTYLE=bold

100 Portrayal Capabilities

DIM_LABELFONTSIZE=14
DIM_LABLEFONTCOLOR=black

North Arrow A North Arrow is used to show map orientation. In ERDAS APOLLO™,
two north arrow styles are defined:

• round - Produces a simple black and grey arrow with an "N" on top

• arrow - Produces a blue and black wheel, with the 4 cardinal points.

The positional placement and size of the North Arrow can be specified
using:

• arrowxposition - Horizontal offset of the arrow, starting at bottom
left

• arrowyposition - Vertical offset of the arrow, starting at bottom left

• arrowsize - The size of the arrow, in pixels. By default, it has the
original image size

An example of a GetMap request with a North Arrow:

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:4326
BBOX=10,10,90,90
LAYERS=northarrow
STYLES=arrow
FORMAT=image/png
BGCOLOR=0xFFFFFF
TRANSPARENT=TRUE
EXCEPTIONS=application/vnd.ogc.se_xml
DIM_ARROWXPOSITION=30
DIM_ARROWYPOSITION=40
DIM_ARROWSIZE=50

Scale Bar Map scale is the relationship between the dimensions of a map and the
dimensions of the Earth. It is usually expressed as a ratio between a
distance on the map and a distance on the Earth, for example, 1:1000.
The scale ratio 1:1000 means that one map unit represents 1000 of the
same units on the Earth's surface. ERDAS APOLLO™ provides two
ways to represent scales:

• km - Displays the scalebar in kilometers or meters

• miles - Displays the scalebar in miles or yards

Portrayal Capabilities 101

• The "look" parameter allows two ways to render the scale bar:

• look - Displays the scalebar either as a colored rectangle with the
scale value in it, value "simple" or as a checkerboard-like bar, value
"carto". A third value is "straight" for a 0-starting value, and constant
increment.

Four additional parameters provide further customization of the
scalebar:

• scalebackgroundcolor and scaleforegroundcolor - Set the
background and/or foreground colors of the bar. Values are given in
RGB, such as (255, 255, 127).

• scalexposition and scaleyposition - Set where the bar will
appear. It is expressed in pixels.

• scalewidth and scaleheight - Pixel sizing of the scalebar.

• scalelabelfontface, scalelabelfontsize and
scalelabelfontstyle - Sets the font, size and style of the
scalebar label.

An example of a GetMap request with a Scale Bar:

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:4326
BBOX=10,10,90,90
LAYERS=scalebar
STYLES=km
FORMAT=image/png
BGCOLOR=0xFFFFFF
TRANSPARENT=TRUE
EXCEPTIONS=application/vnd.ogc.se_xml
DIM_LOOK=carto
DIM_SCALEXPOSITION=200
DIM_SCALEYPOSITION=10
DIM_SCALEBACKGROUNDCOLOR=255,255,0
DIM_SCALEFOREGROUNDCOLOR=255,0,0

Image Border An image border is a line that surrounds the map image. ERDAS
APOLLO™ provides several options for deciding how to add a border
to the map.

Determine the width of the border by using the following parameters:

• thin - thin image border that produces a one pixel dark blue border.

102 Portrayal Capabilities

• thick - thick image border that produces a two pixel dark blue
border.

Change the color and width of the border with the following parameters:

• bordercolor - change the stroke of the border line. Values are in
RGB.

• borderwidth - user-defined thickness expressed in pixels.

An example of a GetMap request with an Image Border:

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:4326
BBOX=10,10,90,90
LAYERS=border
STYLES=thick
FORMAT=image/png
BGCOLOR=0xFFFFFF
TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se_xml
DIM_BORDERCOLOR=255,0,0
DIM_BORDERWIDTH=4

Complete Dressing
Example

An example of a GetMap request with the available Map Dressing
parameters:

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:4326
BBOX=10,10,90,90
LAYERS=grid,northarrow,scalebar,border
STYLES=wgs84,round,miles,thin
FORMAT=image/png
BGCOLOR=0xFFFFFF
TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se_xml
DIM_GRIDSTEP=5
DIM_ARROWXPOSITION=50
DIM_ARROWYPOSITION=50
DIM_SCALEXPOSITION=350
DIM_SCALEYPOSITION=350
DIM_SCALEBACKGROUNDCOLOR=255,255,0
DIM_SCALEFOREGROUNDCOLOR=255,0,0
DIM_BORDERCOLOR=0,0,255
DIM_BORDERWIDTH=3

Portrayal Capabilities 103

Figure 8: Map Dressing Output

Displaying
Statistics in a Map

Displaying statistics in a map provides the ability to determine exactly
what types of geometry and how much geometry is portrayed in the
style/rule issued to the ERDAS APOLLO Portrayal Engine. Display
statistics can be used to analyze the service performance. Issue this
request to the portrayal engine to return statistical information on the
amount and complexity of the geometry requested.

Call Use the WMS GetMap request and append the "NEEDSTAT=TRUE"
option.

Output Information Statistics are only obtained when requesting a raster format. SVG and
GML2 output do not contain portrayal statistics. The response is left-
aligned text in the image returned:

Example:Response to NEEDSTAT=TRUE

A sample result:

Total Geometry:n
Total Group:n
Total Shape:n
Geometry Types:
 Type Unknown(0) : n
 Type Point(1) : n
 Type Line(2) : n
 Type Ring(3) : n
 Type Polygon(4) : n
 Type MultiPoint(5) : n
 Type MultiLine(6) : n

104 Portrayal Capabilities

 Type MultiPolygon(7) : n
Total Point:n
Max Point:n
Mean Point:n
Total Color:n
World Size:f x f
Pixel Size:n x n
StandardScale:f

Definitions Geometry is defined in the feature type and includes point, line,
polygon, ring, multipoint, multiline, or multipolygon. See the OGC
feature types specification.

A shape is a geometric property defined by the Java AWT interface. The
shape is described by a PathIterator object, that can express the outline
of the shape as well as a rule for determining how the outline divides the
two-dimensional plane into interior and exterior points. Each shape
object provides callbacks to get the bounding box of the geometry,
determine whether points or rectangles lie partly or entirely within the
interior of the shape, and retrieve a PathIterator object that describes
the trajectory path of the shape outline.

The ERDAS APOLLO Portrayal Engine uses the SVG concept of group
to apply the same set of common property values to a set of geometries.

Portrayal Statistics
Output Values

Table 4: NeedStat Output Meaning

Line Description

Total Geometry The number of graphic geometries that are
portrayed

Total Group Number of SVG groups returned.

Total Shape The total number of Java AWT shapes that are
rendered

Geometry Types Total amounts are shown for different geometry
types, numbered 0 to 7

Total Point: The total number of points - including points in
geometry types other than point (line, polygons,etc)

Max Point The maximum number of points in a geometry

Mean Point The mean number of points for the geometries
returned

Total Color The total number of colors requested in the map
(based on an RGBA scale)

Portrayal Capabilities 105

**Refer to the SLD 1.0 specification for additional information on
standardscale.

Producing KML KML is a file format used to display geographic data in an Earth
browser, such as Google Earth or Google Maps.

Outputing KML with ERDAS APOLLO is possible in various ways, for
different types of KML contents:

Without changing anything in your portrayal configuration, you can
request maps (with the GetMap request) in KML out of a vector service
(WFS), by providing the proper FORMAT parameter value:
FORMAT=application/vnd.google-earth.kml+xml (replace the "+" sign
with "%2B" if in a URL). You also need to be sure that the SRS used in
EPSG:4326. Sample request:

http://localhost:8080/erdas-
apollo/vector/ATLANTA_VECTOR?VERSION=1.1.1&REQUEST=GetMap&SRS=E
PSG%3A4326&
BBOX=-71.07503,42.264893,-
71.06302,42.273808&WIDTH=500&HEIGHT=500&
LAYERS=protectedareas,hydro,roads,highways,place_names&STYLES=,
,,,&
FORMAT=application/vnd.google-earth.kml%2Bxml&
BGCOLOR=0xffffff&TRANSPARENT=FALSE&EXCEPTIONS=application/vnd.o
gc.se_xml

The ERDAS APOLLO Portrayal Engine, after building the graphic
objects that need to be rendered, produces a KML (XML) output instead
of a SVG-like structure. But as this stage of the process has no more
information about what entities (features) are to be rendered, the
produced KML is semantically poor and only holds graphic information.
This is a basic KML output that can be produced with minimal
configuration efforts and that can fulfill a set of use cases.

Some limitations:

World Size The width and height of the map returned. Units are
expressed in a specified unit of measure based on
the coordinate transform system.

Pixel Size Size in pixels of the output image (width and
height).

StandardScale StandardScale is an SLD property, giving the
denominator of the map scale.**

Table 4: NeedStat Output Meaning (Continued)

Line Description

106 Portrayal Capabilities

• only the basic styling information is found in the KML document:
predefined point icon, line stroke, polygon stroke and fill, polygon
opacity.

• Some of the portrayal rules do not produce any output in KML:
Predefined Symbols for lines and polygons.

• Some rules produce reduced output: Entity Numbering rules for
lines and polygons only produce placemarks

• The GetFeatureInfo request type, with
INFO_FORMAT=application/vnd.google-earth.kml+xml, will also
produce a KML document that can be opened into your Earth
Browser. It will only contain the objects that we found by the
request.

• For smarter maps production in KML, you need to write a specific
Java rule that receives, as input, the feature set to render and the
set of portrayal parameters. You can use the ERDAS KML Helper
API to easily generate the KML elements that fit your needs.

• In a near future, you will no more need to write such a rule if you
requirements are not too specific. ERDAS is writing a set of such
rules to help you start up.

• For KML output out of the raster and coverage servlets, you will not
get more than images. They can be either referenced as a GetMap
URL in the KML document, or embedded as a raster image in a
KMZ archive. For this last case, the format to use in the request is
application/vnd.google-earth.kmz. When the output is KML from
GetMap, ERDAS APOLLO 2011 leverages the Google Super-
overlays technology so that further GetMap requests are executed
with small tiles.

• In the future, KML will also be written as a direct conversion of
vector data, i.e. as output of a GetFeature request.

The ERDAS APOLLO Catalog is also able to output KML. It outputs the
various selected catalog objects, with their title, abstract, description,
object sub-tree if any, and footprint if any. If the object is a KML-enabled
vector layer, it will contain a network link to a GetMap request to that
service. If the object is an KML-enabled image layer, the output is a
network link to a GetMap request producing Google Super-overlays (a
technology allowing tiling).

Portrayal Capabilities 107

Limitations

Fast 2D Rendering The normal behavior of the portrayal engine is to build an SVG-like tree
of graphical elements before converting them into an image or a real
SVG file.

But ERDAS APOLLO also includes an alternative portrayal method,
which directly uses the Sun Java2D library. This method uses low-level
functions to draw points, lines, polygons and several other shapes. It is
several times faster that the normal portrayal method but it does not
apply in all cases. Some of the situations where it does not provide a
proper result are:

• If coordinate transform is needed;

• When using area patterns, line dashes and SVG symbols;

• When requesting SVG as output format.

Coverage Portrayal In the current Release of ERDAS APOLLO , the styling capabilities are
not complete. The restrictions, which are likely to disappear in future
releases are:

• No provider-specific style is interpreted by the portray engine.

• The ERDAS APOLLO Style Editor does not produce the GAR to
allow deployment on the server. The hierarchy must be built
manually.

• The SLD language is the only one currently supported. Property
styles are not read.

108 Portrayal Capabilities

Output Formats 109

Output Formats

Overview ERDAS APOLLO™ supports the output of data into various file formats
for further use or for data sharing purposes. The product allows output
in a variety of formats including images, text and HTML. In order to
output data, the output format must be included in the HTTP request for
a map, feature or coverage.

Image Outputs The ERDAS APOLLO product supports a variety of different image
outputs. All image outputs can be initiated from a GetMap request on
either a raster or vector WMS.

Graphic Interlaced
Format (GIF)

GIF is the most common format used on the Internet and is best for
simple graphics, i.e., line art and simple images with large blocks with
a few colors. GIF files are good for representing graphics, as opposed
to JPEG or other image format types, because the file size is small and
of a better quality. A GIF file can handle only 256 colors which makes it
inappropriate for photo images. GIFs work well for images like company
logos or screen shots. These images should be reduced to 16 colors, if
possible, and saved as a GIF.

Copy and paste the example provided below in the Service Tester for a
GetMap request in GIF format.

http://localhost/erdas-apollo/coverage/ATLANTA_IMAGE?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:4269
BBOX=-84.5318499,33.59473822,-84.22546959,33.9180625
LAYERS=40379914
STYLES=default
FORMAT=image/gif
BGCOLOR=0xFFFFFF
TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se_xml

Joint Photographic
Experts Group (JPEG)

The Joint Photographic Experts Group (JPEG) is an organization that
sets standards for graphic file formats. JPEG is a compressed format,
with some loss of quality due to compression. JPEGs are best for
photos because the file size is small and there is no limit to the number
of colors used. Other file extensions used are .jpg, .jpeg, and .jpe.

ERDAS APOLLO supports a QUALITY parameter in the GetMap
request that sets the compression ratio between 0 and 100, 0 being the
maximum compression (lowest quality).

110 Output Formats

Copy and paste the example provided below in the Service Tester for a
GetMap request in JPEG format.

http://localhost/erdas-apollo/coverage/ATLANTA_IMAGE?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:4269
BBOX=-84.5318499,33.59473822,-84.22546959,33.9180625
LAYERS=40379914
STYLES=default
FORMAT=image/jpeg
BGCOLOR=0xFFFFFF
TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se_xml
QUALITY=70

Keyhole Markup
Language (KML)

KML is a file format used to display geographic data in an Earth
browser, such as Google Earth, Google Maps, and Google Maps for
mobile. KML uses a tag-based structure with nested elements and
attributes and is based on the XML standard.

KMZ files are KML files, sometimes along with raster images, the whole
being compressed using ZIP compression technology.

ERDAS APOLLO™provides several ways to produce KML and KMZ
documents, depending on the nature of the data you want to output.

• For raster data (the Coverage servlet), you can request KML to
obtain a light document containing the URL to a GetMap request
with a raster output format. You can also request KMZ, in which
case the zip contains a light KML document and an image which is
the output of a GetMap in PNG.

• For vector data sets (the WFS servlet), you can only request KML,
KMZ being dedicated to raster data sets. As soon as the portrayal
styles have been created in order to enable the WMS interfaces out
of your servlet, a GetMap request will convert the data into graphics,
like for the raster formats, and then convert it to KML. This means
that few data attributes will be available, due to the late stage of this
conversion.

To benefit from the whole power of the KML output, a specific Java rule
can be written, compiled and uploaded on the server. Such a rule can
be easily written thanks to a light Java API and a set of helper classes
- see ERDAS APOLLO Solution Tookit for more detail on this API.

Output Formats 111

With ERDAS APOLLO™, the KML and KMZ formats are published in
the Capabilities document for the WMS interface, either as their format
names "KML" or "KMZ" or as their mime-types "application/vnd.google-
earth.kml+xml" or "application/vnd.google-earth.kmz", depending on
the version of the WMS specification.

Scalable Vector Graphics
(SVG)

SVG is an XML grammar used for modeling graphics. It differs from the
GIF and JPEG in that it uses graphic objects rather than individual
points. SVG is also a scalable format. This means that a graphic can be
rendered at differing resolutions.

ERDAS APOLLO™ supports three implementations of SVG.

• The default method of implementing SVG output is to issue a
format=image/svg+xml (or format = SVG in older versions of the
WMS spec) and the application will return an XML document that
can be read by any W3C compliant viewer.

This option may produce outputs not readable in an Adobe SVG
reader. The Adobe SVG Reader 3.0 is not completely compliant
with the W3C specification and does not support base64 encoded
content using the "data" protocol for SVG images. This basically
means that Adobe will not support a data URL for embedded SVG
image files, but will support embedded raster symbols.

If the output contains SVG embedded symbols or pattern fills, it
cannot be viewed in the 3.0 version of Adobe. Convert the
embedded symbols into pure raster format, GIF or PNG, since
Adobe will support embedded symbols in this format or use other
ERDAS implementations that support non-compliant SVG viewers.

• The work-around to non-compliant SVG viewers is SVG output
without embedded symbols. Simply edit the feature mapping file
and add the "DontEmbedSVG" option. The procedure is outlined
below:

1. Locate the feature mapping file. The default location is the providers.fac
file directory config/erdas-apollo/providers/vector. Open it in a text
editor.

2. Locate the "Option" section normally found before the beginning of the
<Mapping> elements.

3. Add a new Option listing as follows:

<Option>
 <DontEmbedSVG>true</DontEmbedSVG>
</Option>

112 Output Formats

4. Save the file and if necessary re-start the servlet.

This option will now use HTTP references for linked or embedded
symbols instead of the data URL. This means that all embedded
symbols will now appear as HTTP references that the client must
download to bring into the desired output.

Ensure that all embedded symbol files are downloaded and stored
in the same directory or subdirectory as the main SVG document.

The Java rule developer must insure that the rule created relies on
the Web servlet container that has this option in the providers.fac
file.

• ERDAS has also created a new mime type format for SVG that
returns a zipped document that contains the main SVG document
and all embedded or linked files. This option supports local SVG
output. To use this option, use the parameter format=image/svg+zip
or format = SVG_ZIP in older versions of WMS and the application
will return a zipped file. Unzip the file and place the main SVG
document and it's corresponding files into the same directory. Any
W3C compliant SVG viewer can read the SVG file.

If the document contains embedded SVG symbols, the output will
not work in Adobe 3.0. Either convert the embedded symbols to
pure raster format or ensure that the SVG document contains
relative HTTP reference links. Links to embedded symbols using a
data URL will not work in Adobe.

Due to Adobe SVG Viewer limitations, text rendered with a Halo will not
display a complete image in Adobe SVG Viewer. Also, any style or rule
producing one of the SVG codes Adobe mentions as non-supported will
produce an unreadable file. See Adobe limitations at
http://www.adobe.com/svg/indepth/releasenotes.html.

GeoTIFF "GeoTIFF" refers to TIFF files which have geographic or cartographic
data embedded as tags within the TIFF file. The geographic data,
mainly the SRS and the extent in the header file, can be used to position
the image in the correct location and geometry on the screen of a
geographic information display.

http://www.adobe.com/svg/indepth/releasenotes.html

Output Formats 113

ERDAS offers full support of the GeoTIFF image format. Several data
providers are committed to delivering imagery in GeoTIFF format
including SPOT Image Corp, Trifid (representing LandSat data), Space
Imaging, US Geological Survey, and the New York Department of
Transportation. In addition, the United Kingdom Military Survey has
announced it is testing the format for their products.

The following request shows how to return a GeoTIFF image from an
ERDAS WMS:

http://localhost:8080/erdas-apollo/map/ATLANTA_IMGIDX?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:26986
BBOX=225000,886000,237000,902000
LAYERS=ATLANTA_IMGIDX
STYLES=default
FORMAT=image/tiff
BGCOLOR=0xFFFFFF
TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se_xml

Portable Network
Graphic (PNG)

PNG is a file format for image compression that, in time, is expected to
replace the Graphics Interchange Format (GIF) that is widely used on
the Internet. The PNG format was expressly developed to be patent-
free. A PNG file is compressed in "lossless" fashion meaning all image
information is restored when the file is decompressed during viewing.
PNG includes the following upgrades from the GIF format:

• Degree of opacity (transparency)

• Interlacing

• Gamma correction

• True color or GIF palettes

The following request will return output in PNG format:

http://localhost/erdas-apollo/coverage/ATLANTA_IMAGE?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:4269
BBOX=-84.5318499,33.59473822,-84.22546959,33.9180625
LAYERS=40379914
STYLES=default
FORMAT=image/png

114 Output Formats

BGCOLOR=0xFFFFFF
TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se_xml
QUALITY=30

ERDAS APOLLO™ supports PNG output in 8- or 24-bits. To do so, add
the "QUALITY" parameter to a request, with a value between 0 and 50
for 8-bits PNG and between 51 and 100 for 24-bits PNG.

Configure any provider to produce PNG of a specific quality.

• For a WMS provider, raster or proxy-WMS, add a PARAMBLOCK
tag named "quality" that holds a "PNG" parameter:

<PARAMBLOCK NAME="quality">
 <PARAM NAME="PNG" VALUE="30" />
</PARAMBLOCK>

• For a WFS provider, the configuration is in the mapping file under
the <Option> tag. Create a <Generate8BitsPNG> tag containing
"true" or "false" as in the following example:

<Option>
 ...
 <Generate8BitsPNG>true</Generate8BitsPNG>
 ...
</Option>

X-BMP X-BMP is the default Windows BMP format. Use the PNG field on the
Styling Info tab to return an X-BMP image format.

WBMP A Wireless Bitmap (WBMP) is a graphic image format for sending Web
content to handheld wireless devices. The format is defined in the
Wireless Application Protocol (WAP), Wireless Application
Environment (WAE) Specification. For Web content that is directed to
handheld phones or personal digital assistants (PDA) that have Web
access, use the Wireless Markup Language (WML) to encode the page
and its text. An image converted from a GIF,TIFF, or other graphic
format can be included in the form of a WBMP file. The initial WAP WAE
specification supports only WBMP type 0 that is a compression image
in monochrome. As the bandwidth for wireless transmission increases,
richer images will be supported.

The following request returns a WBMP image format:

Output Formats 115

http://localhost/erdas-apollo/coverage/ATLANTA_IMAGE?
VERSION=1.1.1
REQUEST=GetMap
WIDTH=400
HEIGHT=400
SRS=EPSG:4269
BBOX=-84.5318499,33.59473822,-84.22546959,33.9180625
LAYERS=40379914
STYLES=default
FORMAT=image/vnd.wap.wbmp
BGCOLOR=0xFFFFFF
TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se_xml

Text Outputs ERDAS APOLLO™ supports the following types of text output.

Plain Text Output To produce plain text output from an ERDAS WMS or WFS, add the
INFO_FORMAT parameter to the GetFeatureInfo request. This will
return either plain text or Comma Delimited Tabs (CSV). The content
depends on the connector type. The following is a GetFeatureInfo
request that returns text output.

http://localhost/erdas-apollo/coverage/ATLANTA_IMAGE?
VERSION=1.1.1
REQUEST=GetFeatureInfo
WIDTH=400
HEIGHT=400
SRS=EPSG:4269
BBOX=-84.5318499,33.59473822,-84.22546959,33.9180625
LAYERS=40379914
STYLES=default
FORMAT=image/gif
BGCOLOR=0xFFFFFF
TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se_xml
QUERY_LAYERS=40379914
INFO_FORMAT=text/plain
X=200
Y=220

HTML The INFO_FORMAT parameter of the GetFeatureInfo request will also
return output in HTML format. For vector data, the output will be a
simple but smart HTML page that contains a header, body and footer
text, a logo and title. The output will also contain a custom style sheet
(CSS) that allows flexible configuration.

116 Output Formats

HTML output is accessible from the ERDAS APOLLO Style Editor™.
ERDAS APOLLO Style Editor™ creates styles for HTML output that can
be used in the ERDAS APOLLO Portrayal Engine. Refer to the "ERDAS
APOLLO Style Editor User Guide" for additional information on how to
access this functionality.

Following is a GetFeatureInfo request that returns HTML output.

http://localhost:8080/erdas-apollo/vector/ATLANTA_VECTOR?
VERSION=1.1.1
REQUEST=GetFeatureInfo
WIDTH=400
HEIGHT=400
SRS=EPSG:4269
BBOX=-84.5318499,33.59473822,-84.22546959,33.9180625
LAYERS=40379914
STYLES=default
FORMAT=image/gif
BGCOLOR=0xFFFFFF
TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se_xml
QUERY_LAYERS=40379914
INFO_FORMAT=text/html
X=200
Y=220

GeoRSS RSS (Rich Site Summary) is an XML format for delivering regularly
changing web content. Many news-related sites, weblogs and other
online publishers syndicate their content as an RSS Feed to whoever
wants it.

GeoRSS is an emerging standard for encoding location as part of a
RSS feed (see http://www.georss.org for in-progress work on
GeoRSS).

ERDAS APOLLO™ supports GeoRSS as output of GetFeature
requests on vector data sets (the WFS servlet). It produces RSS 2.0
documents, with both GeoRSS Simple and GeoRSS GML outputs for
the geometries. The sample output below shows a GeoRSS output by
ERDAS APOLLO.

<?xml version='1.0' encoding='utf-8' ?>
<rss version="2.0" xmlns:georss="http://www.georss.org/georss">
 <channel>
 <title>LocalName</title>
 <link>http://www.erdas.com</link>
 <description>no description</description>
 <item>
 <title>CAMBRIDGE</title>
 <georss:where>

Output Formats 117

 <Point xmlns="http://www.opengis.net/gml"
srsName="EPSG:26986">
 <pos>232226.47 901710.31</pos>
 </Point>
 </georss:where>
 <georss:point>42.36522907219097 -
71.10877119738284</georss:point>
 </item>
 </channel>
</rss>

JSON JSON, short for JavaScript Object Notation, is a lightweight computer
data interchange format. It is a text-based, human-readable format for
representing simple data structures and associative arrays (called
objects).

The official Internet media type for JSON is application/json. The JSON
filename extension is .json.

The JSON format is often used for serialization and transmitting
structured data over a network connection. Its main application is in
Ajax web application programming, where it serves as an alternative to
the XML format.

Data Outputs

Shapefiles Shapefile is the most commonly used format for exchanging GIS data.
ERDAS APOLLO™ supports shapefile output in zip format. To obtain
shapefile output, append the "outputFormat=SHAPE" parameter to a
WFS GetFeature request.

Following is a GetFeature request that returns Shapefile output:

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.0.0"
service="WFS"
outputFormat="SHAPE" >
<ogcwfs:Query typeName="iwfs:roads">
</ogcwfs:Query>
</ogcwfs:GetFeature>
</ogcwfs:GetFeature>

118 Output Formats

GML 2/3 GML is an open, non-proprietary language used to create geo-spatial
objects for the purpose of data sharing. GML serves as a data transport
for geo-spatial objects as well as providing a means for describing geo-
spatial Web services. GML is constantly evolving and has quickly
become the standard geo-spatial information (GI) format for all products
that are based on international GI standards.

GML2 is the default output format of the ERDAS WFS 1.0.0 GetFeature
request but GML2 output can also be explicitly requested by appending
the "outputFormat=GML2" parameter to a WFS GetFeature request.

GML3 format is also supported by ERDAS WFS. Request a GML3
output by appending the "outputFormat=GML3" parameter onto a WFS
1.0.0 GetFeature request. Starting with ERDAS APOLLO , the OGC
WFS 1.1.0 specification is supported. If a WFS 1.1.0 GetFeature
request is sent, the default output format is GML3. This is only possible
if the WFS provider is configured as a GML3 one. The feature types
schema must include the GML 3.1.1 feature.xsd schema and the
schema must validate against the GML 3.1.1 schemas. More
information on setting up a GML3-compliant WFS is given in Moving to
GML3.

Note that default outputFormat behavior can be overridden by defining
the <GMLOutputFollowModel>true</GMLOutputFollowModel> in the
<Option> section of the mapping file. Setting it to true will lead to output
being driven by the feature model used to set up the WFS.

GeoTIFF When requesting coverages from a Web Coverage Service (WCS), the
coverages can be output in GeoTIFF format. This output image can
have one to n bands with 8-, 16- or 32-bit integer data (signed or
unsigned), or 16-, 32- or 64-bit floating point data. In other words, the
output can be any band combination and any data type.

Coverage data values do not represent pixel luminescence (red, green,
blue, cyan, magenta, yellow and black), but a physically measured
value (32-bit elevation float data or 16-bit temperature short data).

A GeoTIFF cannot be viewed using standard image applications.

JPEG2000, ECW, NITF,
DTED

In a limited set of situations, ERDAS APOLLO allows data to be output
in several other formats, thanks to the GDAL library.

The conditions to be able to produce JPEG2000, ECW, NITF or DTED
output are:

• The service must be an ERDAS WCS servlet. It is recognized as the
path in the URL contains "coverage". Example:
http://localhost/erdas-apollo/coverage/ATLANTA_MOSAIC.

Output Formats 119

• The type of the provider must be SimpleProvider,
MultiSimpleProvider, IndexProvider or HierarchicalProvider.

• The request must be a WCS GetCoverage.

• For some formats like ECW, the appropriate proprietary library has
to be linked with GDAL in order to be served. However they are not
available on all platforms. Please refer to Provider Types and
Table "GDAL-based Source Formats by Platform" for more details
on formats served via GDAL.

To make sure the service can produce a coverage in one of those
formats, run a DescribeCoverage command on that tile. At the bottom
of the output document, there is a XML section similar to the example
below:

<supportedFormats>
 <formats>GeoTIFF</formats>
 <formats>DTED</formats>
 <formats>ECW</formats>
 <formats>JPEG2000</formats>
 <formats>NITF</formats>
</supportedFormats>

ERDAS IMG ERDAS IMAGINE is a complete suite of geoprocessing tools for
geoscience and earth resource applications for use in image
processing, GIS in remote sensing, and photogrammetry.

ERDAS IMG is the high performance raster data format that is used by
ERDAS IMAGINE. ERDAS APOLLO provides full support for reading
and writing ERDAS IMG format.

120 Output Formats

Coordinate Transformations 121

Coordinate Transformations
This chapter gives a detailed explanation on how to use the Coordinate
Transformations on data using ERDAS servlets.

The ERDAS APOLLO product allows use of a variety of different
coordinate systems on the data. We provide the ability to not only
display data in a selected Spatial Reference System (SRS) but also
provides an advanced and sophisticated engine that allows
transformation of data from one SRS to another.

The ERDAS APOLLO product supports over 1,500 different SRS
transformations. These SRS coordinate transformations are based on
the EPSG classification adopted by international standards
organizations such as OGC and ISO. For more information about the
EPSG, OGC or ISO, consult the Concepts Guide under the Standards
Section.

SRS Concepts It may be required that the SRS employed be permitted to use other
data that is in different SRSes.

There are several different flavors of coordinate transform systems
(CTS) specializing in the preservation of the geographic shape, area,
distance or direction for a specific spatial extent on the globe.
Coordinates from different datasets will often have different reference
systems. In order to use data from different coordinate reference
systems, known point coordinates often must be transformed into the
corresponding coordinates in a different coordinate reference system.
The OGC Coordinate Transform Data Definition Specification defines
which coordinate systems, all based on EPSG, AUTO or BNGrid, are to
be used as well as the specific method to define transformations
between coordinate systems. This definition data can be transferred
between client and server software that uses OGC standard interfaces
such as ERDAS servlets.

Add a Custom SRS Only datasets with a valid SRS can be crawled in the Data Manager. If
a dataset has a custom SRS that is not supported in ERDAS APOLLO,
you can add it and then successfully crawl the data.

Follow these steps to add a custom SRS.

1. Add to ERDAS IMAGINE projection system

• Modify epsg.plb on page 126

2. Add to ERDAS APOLLO

122 Coordinate Transformations

• Create usersref.xml on page 128

• Modify coordinate_system_category.xml on page 130

• Rebuild and Deploy the Webapps on page 130

• Test the Custom SRS in the Data Manager on page 131

• Test the Custom SRS in the Web Client on page 131

All of the SRS-related files are located in the cots.srs.jar file located in
<APOLLO_HOME>webapps\erdas-apollo\profiles\advantage\WEB-
INF\lib\cots-srs-1.3.jar. Unzip the file and browse to
\com\ionicsoft\sref\impl\resource\ and the following SRS files are
included.

• sref.xml - contains a factory reference location - do not modify this
file

• factorysref.xml - default ERDAS SRS file - contains the information
for all ERDAS-supported SRSs - do not modify this file

• ionicsref.xml - contains additional SRSs requested by ERDAS
customers

• usersref.xml - contains any custom SRSs - this file is not included in
the installation so you must create it when you add a custom SRS
(see Create usersref.xml on page 128)

Be sure to back up all files that you modify.

Projection System
Information

All of the SRS information that the ERDAS IMAGINE Projection System
needs is contained in the following files.

• epsg.plb

• mapprojections.dat

• spheroid.tab

• units.dat

• sptable.tab

The first file, epsg.plb, is located in this directory:

<APOLLO_HOME>\tools\native\raster\etc\Projections

Coordinate Transformations 123

The last four files are located in this directory:

<APOLLO_HOME>\tools\native\raster\etc\

mapprojections.dat

This file contains definitions of all the most commonly used map
projections.

The entries in the epsg.plb file must be linked to one of the projection
definitions in mapprojections.dat using the projection identifiers. You
do not need to modify this file to add a custom SRS. This is for
advanced procedures not outlined in this chapter.

Figure 9: The Projection Identifiers in MapProjections.Dat

The definitions in mapprojections.dat also indicate which
parameters you need to supply in the epsg.plb for an SRS associated
with the projection.

In the figure below, the items highlighted in purple are the parameters
you must provide in an epsg.plb entry for an SRS associated with the
Albers Conical Equal Area projection. The items highlighted in silver
indicate the type of measurement for each item.

124 Coordinate Transformations

Figure 10: The Projection Parameters in MapProjections.dat

spheroid.tab

This file contains a mathematical definitions of the most commonly used
spheroids, along with definitions of the datums that are most commonly
used with the spheroid. You do not need to modify this file to add a
custom SRS. This is for advanced procedures not outlined in this
chapter.

Coordinate Transformations 125

units.dat

This file contains all of the units of measure most commonly used for
coordinate systems and projections.

The file is divided into different blocks for all of the things that need to
be measured, such as angles, distance, and area.

Each block contains a list of units that ERDAS IMAGINE can recognize,
along with a conversion factor that is used internally by the software.
You do not need to modify this file to add a custom SRS. This is for
advanced procedures not outlined in this chapter.

126 Coordinate Transformations

sptable.tab

This file contains definitions for the State Plane coordinate systems that
are used in the Unites States of America. You do not need to modify this
file to add a custom SRS. This is for advanced procedures not outlined
in this chapter.

Modify epsg.plb The file epsg.plb contains all of the SRS definitions for the ERDAS
IMAGINE Projection System. To add a new SRS to your ERDAS
IMAGINE Projection System, create an entry for it in this file.

This entry will make use of information that is specified in the other four
files (see above) that are used by the ERDAS IMAGINE Projection
System.

The following figure shows an example of an SRS definition in the
epsg.plb file. The following table describes the elements of the
definition.

Coordinate Transformations 127

Figure 11: Example of an Entry in the File epsg.plb

1. Navigate to
<APOLLO_HOME>\tools\native\raster\etc\projections\epsg.plb

Element
Color

Element Name Description

SRS Name The name of the SRS as it will be displayed in the metadata.

EPSG Code The EPSG code for this SRS. You can check the EPSG
Geodetic Parameter Registry at http://www.epsg-
registry.org/ to verify that your number is unique.

Projection Identifier Identifies the projection in the sptable.tab file that matches
the SRS you are adding.

Spheroid Name The name of the spheroid used for this projection. This
spheroid must have an entry in the spheroid.tab file.

Datum Name The name of the datum used for this projection. This datum
must have en entry in the spheroid.tab file.

In the spheroid’s definition in the spheroid.tab file, there is a
list of the commonly associated datums. Find the name of
the datum used for this SRS. Replace DATUM in the
epsg.plb entry with the name of that datum.

Zone Number This is applicable only to the UTM and State Plane
projections and is specified in sptable.tab. For everything
else, this should be zero.

Parameters The parameters for this SRS, such as false easting, false
northing, longitude of the central meridian, etc. The file
sptable.tab indicates which parameters must be specified
for this type of projection.

Units The unit of measurement used in the coordinate system.
This unit must have an entry in the file units.dat.

http://www.epsg-registry.org/

128 Coordinate Transformations

2. Open the file and add the projection parameters according to the
structure described in Figure 11. The parameters will vary depending
on which projection the SRS is associated with. To find out which
parameters are required for your SRS, open the file sptable.tab.

• Each parameter in the epsg.plb file is preceded by a number and
a colon, and the parameters are always numbered starting with 2.

• The parameter values must be entered in (scientific) E notation and
require 17 significant digits and 3 digits for the exponent.

For example:
.006789247 should be entered as 6.7892470000000000E-003
12,450,000 should be entered as 1.2450000000000000E+007

• If the parameter represents an angle measurement, the value must
be given in RADIANS, not degrees.

Create usersref.xml This file is not included with the installation. You must create it to add a
custom SRS. This file defines the datum, spheroid, and the custom
projection parameters.

1. Open any text editor and type the following lines into the new file.

<?xml version="1.0" encoding="utf-8" ?>

<SREF>

</SREF>

2. Save the new file as usersref.xml.

3. Open the file ionicsref.xml and find an entry that uses the same
projection as the SRS you want to create.

4. Copy the entire entry beginning with a <PROJCS ID.. tag and ending
with the tag </PROJCS>.

5. Paste the entry into the usersref.xml file, between the SREF and
/SREF tags. Use this as a template to define your custom SRS.

6. Change the PROJCS ID number to the EPSG number you are using for
this custom SRS.

7. Change the NAME value to the name you are using for the custom
SRS.

Coordinate Transformations 129

8. The UNIT ID is a code that represents the units used in the coordinate
system (feet, metres, kilometers, etc.) The valid codes are located at
the top of the factorysref.xml file.

9. The GEOCS ID represents the datum or spheroid used for the custom
SRS. The valid codes are located in the factorysref.xml file.

10. The parameters vary depending on the type of projection you are
adding. You can get the proper values for the parameters by referring
back to the parameters that you entered in the epsg.plb file.

The values for the parameters are always given in RADIANS in the
epsg.plb file. They must always be indicated in ARC SECONDS
in the usersref.xml file.

1. Save and close this usersref.xml file.

If the usersref.xml file will be used with another program such as
ERDAS APOLLO Style Editor or the command-line tool, copy it to
a location with the com\ionicsoft\sref\impl\resource structure and
add the root of that structure to CLASSPATH.

Integrate usersref.xml Because ERDAS APOLLO is an enterprise software system with
different components in different locations, you add the usersref.xml in
several different places.

Use any advanced zip utility to open the archive files.

1. Copy the newly created usersref.xml to the .jar file in the following
location.

<APOLLO_HOME>\webapps\erdas-apollo\profiles\advantage\WEB-INF\lib\cots-srs-
1.3.jar\com\ionicsoft\sref\impl\resource\

2. For the Web Client, copy the newly created usersref.xml to the .jar file
in the following location.

<APOLLO_HOME>\webapps\apollo-client\default\WEB-INF\lib\cots-srs-
1.3.jar\com\ionicsoft\sref\impl\resource\

3. For the Data Manager, the archive file is in another archive file. First
open the following archive file.

<APOLLO_HOME>\configuration\org.eclipse.osgi\bundles\7\1\.cp\lib\cots-srs.jar

4. Copy the newly created usersref.xml to the second .jar file in the
following location.

cots-srs.jar\com\ionicsoft\sref\impl\resource\

130 Coordinate Transformations

Modify
coordinate_system_cate
gory.xml

Next, add the new SRS to a category in the
coordinate_system_category file.

Use any advanced zip utility to open the archive files.

1. Edit the coordinate_system_category xml file in three places. Add the
references to the custom projection (two custom SRSs are shown in the
example shown below) at the end of the file in each location.

<crs:category name="Custom">
<crs:code name="MGI AT-Styria 31 / Bessel" value="EPSG:44431" />
<crs:code name="MGI AT-Styria 34 / Bessel" value="EPSG:44434" />

</crs:category>

2. Navigate to:
<APOLLO_HOME>\webapps\erdas-apollo\profiles\advantage\WEB-INF\lib\cots-srs-
1.3.jar\com\ionicsoft\sref\impl\resource\

open the archive file and make the changes to
coordinate_system_category xml as shown in the example in step 1.

3. For the Web Client, navigate to:
<APOLLO_HOME>\webapps\apollo-client\default\WEB-INF\lib\cots-srs-
1.3.jar\com\ionicsoft\sref\impl\resource\

open the archive file and make the changes to
coordinate_system_category xml as shown in the example in step 1.

4. For the Data Manager, the archive file is in another archive file. First
open the following archive file.

\configuration\org.eclipse.osgi\bundles\7\1\.cp\lib\cots-srs.jar

5. Open the second archive file and make the changes to
coordinate_system_category xml as shown in the example listed in
step 1.

cots-srs.jar\com\ionicsoft\sref\impl\resource\

Rebuild and Deploy the
Webapps

After you create and modify the files as described above, you must
rebuild the ERDAS APOLLO webapps and deploy them in JBoss.

1. Stop JBoss.

2. Ant jboss. Open a command line windows and type:

Cd <APOLLO_HOME> [enter]

<APOLLO_HOME>\tools\ant\bin\ant jboss

Coordinate Transformations 131

3. Wait until the build completes.

4. Deploy the new webapps in JBoss.

• Navigate to <APOLLO_HOME>\dist\jboss and copy erdas-
apollo.ear

• Navigate to <APOLLO_HOME>\jboss\server\default\deploy and
back up erdas-apollo.ear

• Copy erdas-apollo.ear from the \dist folder to the default/deploy
folder.

5. Delete the JBoss cache by deleting the
<APOLLO_HOME>\jboss\server\default\work folder.

6. Start JBoss.

Test the Custom SRS in
the Data Manager

Follow these instructions to make sure that your custom SRS is added.

1. Launch the ERDAS APOLLO Data Manager.

2. In the Explorer View, right-click on the ROOT node and create an
aggregate.

3. Locate the property Default SRS and click on it.

4. Click the button that appears in the Value column. The Spatial
Reference Systems dialog box opens.

5. Locate your custom SRS in the list on this dialog, highlight it, and click
OK.

6. Click Save from the tool bar.

7. Click the Crawl icon to create a crawler that will load data into your
ERDAS APOLLO Catalog.

8. When you are asked to specify the directory to crawl, select the
directory that contains your custom SRS imagery.

If the crawler still does not recognize the dataset, check the parameters
in the usersref.xml file or in the imagery.

Test the Custom SRS in
the Web Client

Follow these instructions to make sure that your custom SRS is added.

132 Coordinate Transformations

1. Launch the ERDAS APOLLO Web Client.

2. Click the SRS box on the Info Bar above the map.

3. Select -Select-. The Spatial Reference Systems dialog box opens.

4. Look for your custom SRS in the list on the Spatial Reference Systems
dialog.

133

Usage and Syntax
of the SRS/CRS
Parameter

At the time OGC defined Web Services specification, for Web Map
Services, it had to address the syntax for expressing coordinate
systems. OGC decided to rely on the EPSG (European Petroleum
Survey Group) definitions, and to adopt a simple syntax: code:value,
where code is one of "EPSG" and "AUTO". "EPSG" is for codes defined
in the EPSG database, and "AUTO" is for Automatic projections, as
defined in the WMS 1.1.1 specification appendix. Examples of
commonly used values are:

• WGS84 geographic system: EPSG:4326

• UTM 32 North based on WGS84: EPSG:32632

• Automatic UTM, in meter, centered on (-100,45):
AUTO:42003,9001,-100,45

Such expressions can be used in requests (HTTP-GET and HTP-
POST), can be found in Service Metadata (capabilities) documents and
in other XML outputs such as response to a DescribeFeatureType, or
in a GML output.

The next phase, for OGC, was to try and extend the expressions of
coordinate systems, as well as standardize the syntax. This led to
expressing coordinate systems as URNs (Universal Resource Names,
defined in RFC 2141 in 1997 by the Internet Engineering Task Force)
so that they could be registered in a standardization institute like IETF.

At IETF, the notation for CRSes defined by OGC must have the form:
urn:opengis:def:crs:authority:version:code . "authority" can be one of
"OGC" or "EPSG". "version" will generally be empty. "code" is the value
given by the authority. For the examples above, the corresponding URN
syntax is:

• WGS84 geographic system: urn:opengis:def:crs:OGC::84

• UTM 32 North based on WGS84: urn:opengis:def:crs:EPSG::32632

• Automatic UTM, in meter, centered on (-100,45):
urn:opengis:def:crs:OGC:42003:1:-100:45

In ERDAS APOLLO, the old code:value and the new URN syntaxes are
supported, as well in requests and responses as in the configuration
files.

For additional information, refer Creating a Custom SRS on page 74.

134

Administration of ERDAS APOLLO 135

Administration of ERDAS APOLLO
This chapter provides explanations on what can be administered as
well as guidelines on how to invoke the services to ensure that they are
properly configured.

Introduction Administration consists of interacting with the running Web services.
Administration of Web services is done to ensure that they are behaving
normally or to update their configurations.

Administering the services is a convenient way to monitor or change
their behavior without having to stop them. The users of those services
should not be impacted by administration tasks.

This section describes how to administer the product servlets as well as
the underlying data connectors to the servlets.

Types of Administration The current version of the product provides several different methods,
tools and tasks to administer the services.

Some of the methods are Web-enabled as "checks" to the running
services. These methods consist of parameters that can be given to the
servlets (see Checks below). This allows the services to perform
administration processing such as re-initialization, output version,
license, debug information, or removal of cache files.

Several tools provided must be started using the system's command
line. These tools perform automatic creation of indexes, environment or
connection checks.

Finally, some administration tasks can only be done by manually
modifying configuration files. They permit making more profound
changes in the servlets behavior, such as the compression threshold,
the metadata repository location or the styles library location.

Servlet-Engine
Level
Configuration
Parameters

Most of the up-to-date servlet engines are configured in the same XML
file, named "web.xml". This file is located in the WEB-INF directory of
the current web application. If this web application is deployed as a web
archive (WAR) file, similar to the ERDAS servlets, the web.xml file is in
the WEB-INF directory in that war file.

136 Administration of ERDAS APOLLO

For ERDAS servlets, configure the servlet URL pattern and startup
class and define the provider factory file (providers.fac) location in the
web.xml file. Other java-based properties can be defined in this file, but
these parameters are not specific to ERDAS servlets. Types of java-
based properties that can be configured in web.xml file include
http.proxyHost and http.proxyPort. These types of parameters are
added to the servlet configuration section of the web.xml file by adding
a "<init-param>...</init-param>" block in the <servlet> definition section.
(See the example below).

The providers.fac file default location is in the "resource" sub-directory
of the servlet main class package. For example, the "wfs" servlet's
startup class is named "com.ionicsoft.wfs.server.WFSServer". This
means that its providers.fac default location is under
"com/ionicsoft/wfs/server/resource". However, in the distribution, this
location is overridden with the
<APOLLO_HOME>/config/<servlet_type> directory. This allows easy
provider modifications (either manually or with the Data Manager)
without having to re-deploy the webapp.

Other initialization parameters can be given to the servlets. These
parameters are not specific to ERDAS servlets but some of them could
depend on the level of implementation of Java by the servlet engine.

Servlet-Engine Level
Security

Several authentication mechanisms can be set up to request the client
application to authenticate when querying a J2EE servlet engine or
application server. Generally, the application servers allow three
authentication mechanisms, BASIC, DIGEST and PKI, as well as the
establishment of a secure channel. BASIC authentication on an SSL
channel is recommended if integrity or confidentiality is requested; if not
DIGEST authentication should be used on a classic HTTP connection.

The J2EE-based declarative security is based on the set up of an
authentication "Realm" containing the definition of users and groups.
Several options are possible depending on the type of application
server used:

• Description in an XML file

• JDBC connection to a database

• LDAP directory

An extensive description of the configuration steps needed for coarse-
grained security at the servlet engine level can be found in Advanced
Security on page 195.

Administration of ERDAS APOLLO 137

Servlet-Specific
Configuration
Parameters
(providers fac)

Most of the configuration for ERDAS servlets is set up using the main
providers factory file, providers.fac.

The providers.fac file needed by the servlet for data source access as
well as global behavior tuning is taken from the
<APOLLO_HOME>/config/erdas-apollo/<servlet_type> directory.

Example: Default providers.fac Location for ERDAS Servlets

For the "map" servlet the class name is
"com.ionicsoft.wmtmap.servlet.GenericMapServlet". The default
providers.fac file is stored in the directory
<APOLLO_HOME>/config/erdas-apollo/providers/map.

For the "vector" servlet, the class name is
"com.ionicsoft.wfs.server.WFSServer" and the default path is
<APOLLO_HOME>/config/providers/erdas-apollo/vector.

For the "coverage" servlet, the class name is
"com.ionicsoft.coverage.servlet.CoverageServlet" and the path is
<APOLLO_HOME>/config/providers/erdas-apollo/coverage.

If more than one servlet of each type is needed or if the configuration
directories have to be in another location, the providers.fac file can be
re-located by changing the "ConfigUrl" parameter in the WEB-
INF/web.xml file of the erdas-apollo webapp. If using a JBoss
application server, the web.xml file is located in
JBOSS_HOME/server/default/deploy/erdas-apollo.ear/erdas-
apollo.war/WEB-INF. Its value is a URL to the file.

The URL types supported by HTTP and those supported by
ERDAS servlets can both be used (See the Provider Configuration
chapter, "URL parameters behavior" explanation for details on
ERDAS-specific protocols).

Example: Providers.fac File re-location example

<init-param>
 <param-name>ConfigUrl</param-name>
 <param-value>obj:///./mydir/providerstest.fac</param-value>
</init-param>

Other initialization parameters can be given to the servlets. They are
not specific to ERDAS servlets, but some of them could depend on the
level of implementation of Java by the servlet engine.

138 Administration of ERDAS APOLLO

Example:Servlet parameter to proxy requests through a firewall

<init-param>
 <param-name>http.proxyHost</param-name>
 <param-value>myProxyHost.com</param-value>
</init-param>
<init-param>
 <param-name>http.proxyPort</param-name>
 <param-value>8090</param-value>
</init-param>

Parameters in the
providers fac File

The providers.fac file is used by ERDAS servlets to determine the
behavior of and how to initiate the connection to the underlying data
sources. In this chapter, only the servlet behavior defined in the
"CONFIGURATION" part of the providers.fac file is explained. The data
connection part is covered in the "Data Configuration" part of this guide.

Framework
Configuration

Framework Configuration is achieved in the second part of the
providers.fac file. Common behavior of the data providers can be
defined by configuring the elements listed below in the global
configuration section of the file, behind the <CONFIGURATION> tag.

There is generally only one instance of each of these parameters.

Table 5: Framework Configuration Elements

ELEMENTS Descriptions and examples

CACHE Sets the directory in which caching will be achieved and the caching method
applied. The "CONTROLDIR" boolean parameter controls the removal of
expired directories under the cache directory. The default is false. If it is set,
it will prevent from having embedded cache directories controlled by
different servlets. See (1) below for more details.

<CACHE CONTROLDIR=”TRUE” USAGE="PERSERVLET" />

Administration of ERDAS APOLLO 139

COMMANDS Allows restricting the use of the "debug" provider. Attributes, whose values
are "true" and "false", are the names of the associated "cmd" values,
STATE, GETLIST, DEBUG (for ON, OFF, DUMP). The DISABLED attribute
allow to disabled all debug commands.

<COMMANDS STATE="FALSE" GETLIST="TRUE" DEBUG="FALSE" />

or

<COMMANDS DISABLED="true" />

DEFAULT It defines some configuration variables. All attributes and all children
elements can define a variable which can be accessed by the provider.
<DEFAULT>

<TmpPath>Temp path here</TmpPath>

</DEFAULT>

GARBAGE It has two attributes, LOOP and IDLE. It tells, in seconds, the looping time
of the garbage thread and the maximum idle time before garbage collecting
the providers. That means with default values that the garbage thread will
check every 10 minutes if each provider has been used the last 10 minutes
and will flush the ones that have been idle during this time. This parameter
is optional and the default values are 10 minutes, for both attributes. To
disable this feature, set the loop time to a negative value or 0.

<GARBAGE LOOP="600" IDLE="600" />

GZIP Shows the maximum size a transiting file can be without requiring
compression. The THRESHOLD attribute is expressed in bytes. By default,
the value is 0 meaning that all files should be compressed. The
ENGINECHUNK attribute, when set (default), allows the servlet engine to
do "transfer chunked encoding" by itself.

<GZIP THRESHOLD="2000000" />

Table 5: Framework Configuration Elements (Continued)

ELEMENTS Descriptions and examples

140 Administration of ERDAS APOLLO

LEGEND This parameter gives the location, file path or URL, to the Legend images to
be used in LegendURL tags.

<LEGEND DIR="/home/ERDAS/legend"
TEMPLATE="{absolute}{id}/{name}/{style}.gif" />

LOGCONFIG Configuration parameters relating to service logging. It allows the export of
information to a repository of any type. This parameter and its deprecated
logging system are now based on SLF4J and Log4J standards. See
Logging on page 144 for a complete description.

<LOGCONFIG TYPE="FILE"
 FILENAME="D:/ERDAS/logs/wfslog"
 FILESIZE="1000000"
 MAXFILE="10"
 ENABLE="*" />

METADATA This parameter gives the location, file path or URL, to the Metadata files to
be used in MetadataURL tags.

<METADATA DIR="/home/ERDAS/metadata"
TEMPLATE="{absolute}{id}/{name}.xml" />

REGFUNC This parameter allows to declare a Java User Function for post-processing
on WFS feature sets.

<REGFUNC ID="Summary"
JCLASS="com.ionicsoft.test.wfs.functions.SummaryFunction">
<PARAM NAME="length" VALUE="5" />
</REGFUNC>

STYLE It has two attributes: DIR that indicates the root directory of the rendering
files and LIB that indicates the root directory of useful JavaScript functions.
No default value is defined.

<STYLE DIR="D:/ERDAS/rendering/"
 LIB="D:/ERDAS/renderlib/" />

Table 5: Framework Configuration Elements (Continued)

ELEMENTS Descriptions and examples

Administration of ERDAS APOLLO 141

WMS (map) Servlet Among the Framework Configuration parameters listed above, some of
them do not apply to the WMS servlet:

The parameter STYLE is useless as it is used only when applying
portrayal styles to features in the WFS.

WFS (vector) Servlet All of the listed tags apply to this servlet.

TEMPMANAGER The directory where temporary files are stored. It defines the absolute path
of the directory containing the generated temporary files. Otherwise the jdk
temp directory is used.The variables expressed in the path are substituted,
especially {tmp} or {TMP} are defined as the absolute path of the java temp
directory (including the trailing separator). So you can use {tmp}local.

<TEMPMANAGER DIR="c:/temp" />

TRANSLATOR It has four attributes, HOST, PORT, PROTOCOL and FILE. The first two
(optional) parameters are used when the actual hostname and/or port of the
server does not match those contained in the URLs returned to the client by
the service. E.g., if the WFS builds a capabilities XML, the file will contain
URLs that must have valid hostnames. If omitted, the PORT used will be the
one defined in the request. The PROTOCOL parameter allows to mention
another protocol (such as https). The FILE parameter allows to add
something to the file part of the URL. By default, the current file part is used.
Note that if FILE is set, the provider name is always added to the new file
part.

<TRANSLATOR HOST="myserver.erdas.com" PORT="8080"/>

STORAGE It defines defines the persistent storage ara to save uploaded file. The
absolute path is specified through the DIR attribute. The variables
expressed in the path are substituted, especially {tmp} or {TMP} are defined
as the absolute path of the java temp directory (including the trailing
separator). So you can use {tmp}local.

<STORAGE DIR="/home/area" />

1. The "INTERVM" caching method means that the cache directory can be shared by several processes or
virtual machines. This share is achieved by a file, named lock.txt, that insures locking. Caution: If this file
remains in the cache, the application may hang. The "PERSERVLET" option creates a cache that only per-
tains to the configured servlet. The "GLOBAL" option means that the cache is shared by all servlets. The
first configuration wins. "NONE" means that no caching is used for the servlet.

Table 5: Framework Configuration Elements (Continued)

ELEMENTS Descriptions and examples

142 Administration of ERDAS APOLLO

WCS (coverage) Servlets The parameter LEGEND is currently not available.

Checks Ensure that the services are configured and running properly before
adapting them to the data. In this section, learn how to:

• Check the product license

• Check the product version

• Check the log enablement

• Enable the product's debug capabilities

• Check the data connections to the servlet environment

• Check the syntax of the providers.fac file

General Checks Before configuration checks can take place, the administrator must
make sure the underlying data server is up and running and the servlet
engine is successfully started. HTTP requests containing set options
and parameters can then be sent either to the overall servlet or to an
individual provider.

Each type of data managed by an OGC-compliant Web Service gives
the servlet its name, "map" for raster and proxy-WMS, "vector" for
feature data and "coverage" for imagery. This name allows the building
of the URL path of the servlet. e.g. http://apollo.erdas.com/erdas-
apollo/vector. The next part of the URL is the Provider name. Each
provider addresses a feature-, map- or coverage- source found in the
data part of the providers.fac file.

Examples of Provider URLs

http://localhost/erdas-apollo/vector/ATLANTA_VECTOR
http://localhost/erdas-apollo/coverage/ATLANTA_SINGLE

Note that a particular pseudo-provider, named "debug", is
supported by the servlets. The debug provider allows global
management of the servlet independent of any provider. Example:
http://localhost/erdas-apollo/map/debug.

The table below is a description of debug options and parameters and
the expected responses.

Administration of ERDAS APOLLO 143

Table 6: Debug Request Parameters

Note: Some or all of those debugging options can be deactivated in the
configuration. See the "COMMANDS" parameter in Servlet-Specific
Configuration Parameters (providers fac).

An example of the command to force reinitialization of all the providers
remove cached requests, and obtain version information is:

http://localhost/erdas-
apollo/vector/debug?request=debug&cmd=init,cache,version

An example of the command to display the log messages for a given
provider along with environment information.

http://localhost/erdas-
apollo/vector/MYPROVIDER?request=debug&cmd=dump,env

cmd=gon Puts the whole servlet in debug mode. Generally
followed by cmd=gdump commands. Only applies if
no <LOGCONFIG> element is defined.

cmd=gdump Dumps the messages on the servlet. Must be
preceded by cmd=gon. Only applies if no
<LOGCONFIG> element is defined.

cmd=on Puts the provider leveling debug mode. Only
applies if no <LOGCONFIG> element is defined.

cmd=dump Dumps the message on the provider. Only applies if
no <LOGCONFIG> element is defined.

cmd=init Re-initializes the servlet. It must be done if the
providers.fac has been changed and needs to be
re-read.

cmd=flush Suppresses all the instances of all providers.

cmd=cache Erases the cache content on the servlet side.

cmd=env Dumps the servlet environment variables.

cmd=version Provides information on ERDAS COTS version and
external specs used (deprecated).

cmd=getlist Displays the list of configured providers, along with
the debug flag - ON or OFF. ON if a cmd=on or gon
command was executed before.

cmd=license Provides information about ERDAS license validity
(host, date) and products

cmd=state Displays the state of the servlet and the state of
each provider

144 Administration of ERDAS APOLLO

The "Service Tester" tool, included in ERDAS APOLLO distributions
and documented in ERDAS APOLLO Tools and Viewers, shows how
to send HTTP-GET or HTTP-POST requests.

The providers.fac file is an XML file, with an associated – but not
mandatory – DTD, named factory.dtd. This DTD should be used
when editing and modifying the providers.fac file for input help and
content validation.

Connections

JDBC connections

In previous chapters, connection information was provided for various
data sources. Some of the data sources are reached using a Java
connector and others use a JDBC connection. Each type of data source
reachable via a JDBC connection uses one of several different drivers.
Therefore, the connection string will vary accordingly. For example,
connecting to Oracle using a thin or an OCI driver will change the syntax
of the connection string.

Testing the JDBC connection to a data source can be done directly with
the servlet. However, for the most common environment, Oracle, the
JDBC Checkup Java class is provided for easier testing. Please refer to
the Tools & Viewers chapter for a complete description of this tool.

Logging ERDAS APOLLO logging is based on log4j, a Java-based logging utility
which is a project of the Apache Software Foundation. Events logging
is done through log4j Logger, with a given logging level. The logging
outputs are done by Appenders. There are numerous Appenders
available, with descriptive names, such as FileAppender,
ConsoleAppender, SocketAppender, SyslogAppender,
NTEventLogAppender and SMTPAppender. Multiple Appenders can
be attached to any Logger, so it is possible to log the same information
to multiple outputs; for example to a file locally and to a socket listener
on another computer.

Appenders use Layouts to format log entries. A popular way to format
one-line-at-a-time log files is PatternLayout, which uses a pattern string.
There are also HTMLLayout and XMLLayout formatters for use when
HTML or XML formats are more convenient, respectively.

Administration of ERDAS APOLLO 145

In an ERDAS APOLLO JBoss installation, the log4j configuration file is
located at <APOLLO_HOME>/jboss/server/default/conf/jboss-
log4j.xml (single installation) or
<APOLLO_HOME>/jboss/server/cluster/conf/jboss-log4j.xml
(cluster installation). Both are configured by default to use the following
two appenders.

• ConsoleAppender, redirecting logging to the JBoss console,

• DailyRollingFileAppender, writing logs to a daily-rolling file in the
"log" folder of JBoss

Debugging Debugging is possible if the logging configuration does not direct
information to a file, a JDBC source or a JMS server. It can be
requested at two levels - at the servlet and at the provider levels. When
initializing a provider fails, debug at the servlet level. When initialization
succeeds but it does not provide proper results, debug at the provider
level.

To debug at servlet level, the debug mode has to be set on the "debug"
pseudo-provider, by using the "cmd=gon" option ("g" is for "global").
Then, run the command followed by a request to dump the debug
information. A sample sequence is:

Example:Sample Debug Sequence at the Servlet Level

http://localhost:8080/erdas-
apollo/vector/debug?request=debug&cmd=gon
http://localhost:8080/erdas-
apollo/vector/myProvider?version=1.0.0&service=WFS&request=GetC
apabilities
http://localhost:8080/erdas-
apollo/vector/debug?request=debug&cmd=gdump

To debug a single provider, the debug mode has to be set on the given
provider, using the value "on" instead of "gon" for the "cmd" parameter.
A sample sequence is:

Example:Sample Debug Sequence at the Provider Level

http://localhost:8080/erdas-
apollo/vector/myProvider?request=debug&cmd=on
http://localhost:8080/erdas-
apollo/vector/myProvider?version=1.0.0&request=DescribeCoverage
&typename=myCoverageType
http://localhost:8080/erdas-
apollo/vector/myProvider?request=debug&cmd=dump

146 Administration of ERDAS APOLLO

Note: Some or all of those debugging options can be deactivated in the
configuration. See the "COMMANDS" parameter in Servlet-Specific
Configuration Parameters (providers fac).

An example of command to force reinitialization of all the providers with
removal of cached requests and obtain version information is:

http://localhost:8080/erdas-
apollo/vector/debug?request=debug&cmd=gon

An example of command to display the log messages for a given
provider along with environment information is:

http://localhost:8080/erdas-
apollo/vector/MYPROVIDER?request=debug&cmd=dump,env

Performance Tuning 147

Performance Tuning
After mastering the tasks within the ERDAS APOLLO documentation,
additional configuration of the instance can be done to optimize
performance. This chapter offers performance tuning pointers that
address different aspects of the ERDAS APOLLO instance.

Introduction Getting the system up and running is the first step in building a
production environment. As soon as it is up, performance quickly
becomes the most important issue. Iit is important to quickly remove
major inefficiencies and performance bottlenecks in order to ensure a
level of performance that will satisfy users.

In this chapter, most of the focus is on tuning the output of GetMap
requests, identifying at each step of map production which piece of the
system is involved, and how its behavior can be optimized.
Performance optimization process as it is applied to both vector files
and spatial databases is differentiated from their portrayal onto maps.
Also discussed will be performance issues related to the portrayal of
raster, or coverage data. At the end of the chapter, additional tips will
be provided for tuning the system's environment.

The chapter roughly follows the steps of producing a map (as in the
picture below):

• The GetMap Request

• Data Extraction

• Portrayal

• Raster Sources

• Environment

Figure 12: The GetMap stream with an Oracle source

148 Performance Tuning

Tuning the GetMap
Request

1. The more map layers requested, the more information received. At
some scales, layers might hold an excessive level of detail justifying
either their exclusion or pruning. This raises the question of how to
make the layer choice seamless. ERDAS recommends configuring an
OpenGIS Web Map Context document that holds the scale range
parameters. Even through there are several Context builder tools on the
market, it is recommended that either ERDAS APOLLO Style Editor or
ERDAS Web Client be used to build Web Map Contexts.

2. The Coordinate Reference System (CRS) where the map is requested
can be changed in the client application. However requesting
coordinate transformations implies additional computing time that can
be long when maps are large or transformation algorithms are not
obvious. Therefore, it is recommended that map requests be in the
native CRS of the service for improved performance. The user won't be
aware of that information but the administrator who builds the initial
"Web Map Contexts" should consider using the native CRS as much as
possible.

3. Some servers also support "VendorSpecific" parameters that allow for
optimized output. For example, when invoking an ERDAS servlet on
vector data with GetMap requests, setting the USEBOX parameter to
"FALSE" avoids the need to use the spatial index on the geometry, that
can be time consuming for small scale requests.

Performance Tuning 149

4. The output format requested and the weight of each band of the image
(8 bit, 24 bit), both have an impact on the response time. Requesting
24-bit non-compressed TIFF images will transport larger volumes than
an 8-bit 256 color GIF. JPEG has varying levels of compression. PNG
can be 8-bit or 24-bit, but Internet Explorer 6 does not support
transparency in 24-bit PNG. So, properly choosing the output format
with the "FORMAT" parameter and adequately adding the
VendorSpecific "QUALITY" parameter can accelerate the output. For
example, FORMAT=image/png&QUALITY=0 will produce an 8-bit PNG
that takes a bit more time to calculate as most native data are 24 or 32-
bit but the image is 3 times smaller.

5. Of course, 300x300 images will be output faster than 800x600 and
smaller screens do not take advantage of large images. Do not hesitate
to tune the client application's map view size.

6. If the Proxy WMS providers addressing third-party WMS's is
configured, requests to that provider will timeout if the underlying WMS
is not responding. It could lead to apparent overall client slowness, even
if only one layer is slow.

Tuning the Data
Extraction

In this section, vector data extraction scenarios for data persisted as
both Shapefile and RDBMS will be considered. For raster, or coverage
data, see Tuning the Raster Data Sources. Tuning a database server
is both art and science. Do not hesitate to request the help of a good
database administrator.

Other tuning tasks are explained in the following sub-sections:

• tuning the RDBMS configuration

• tuning the database indexes

• tuning the native request

Tune the RDBMS
configuration

1. For Oracle and other RDBMS, some of the elements influencing
performance are:

• Global Setting - (DB_BLOCK_SIZE, DB_BLOCK_BUFFERS,
SHARED_POOL_SIZE, LOG_BUFFER, DB_WRITERS, …).

• JDBC Driver - (ERDAS WFS accesses Oracle through JDBC Thin
and OCI drivers). OCI drivers are generally faster, but consider
installing the Oracle Client on the Servlet Engine host.

150 Performance Tuning

• Oracle Version - e.g. Spatial indexes are optimized in more recent
Oracle releases

• Using Materialized Views

• Oracle Partitioning

• Spatial Indexing - Quad-Tree, R-Tree, GiST Tree (See next section)

• Oracle RAC (Real Application Cluster)

2. When setting up a provider, the connection string must be included in
the providers.fac file. This includes a URL-like expression with the
database hostname and port, the user, the database ID, etc.

For Oracle, the JDBC driver allows you to add the defaultRowPrefetch
parameter to obtain larger data sets. By default, only 10 rows are
fetched at a time. Setting this parameter to 1000 when most of the
requests are expected to output large volumes could improve the
response time significantly. Note that it only impacts performance if
there is network access between the servlet engine and the Oracle
server.

For PostgreSQL and Microsoft SQL Server 2008, the JDBC driver
allows you to add the fetchsize parameter if you want. If you do not add
it, ERDAS APOLLO fetches 1000 rows at a time. If you do add it, and
you set its value to a positive number, the number of rows that you
specify will be fetched. If you add the parameter and set its value to any
negative number, all of the rows will be fetched.

3. Each JDBC-type provider (Oracle, PostgreSQL) maintains a pool of
JDBC connections to the database. The default pool size is set to 10 DB
connections, and that pool is part of the ERDAS APOLLO product.
Depending on the number of simultaneous connections, that size can
be increased using the poolsize parameter. If running the servlets in an
Application Server, delegate JDBC pooling to the application server
pooling to take full advantage of its capabilities.

Performance Tuning 151

4. When running requests including spatial filters, significant performance
improvements occur if you take advantage of the Oracle prepared
statements mechanism. Indeed, this mechanism is managed by Oracle
to let its engine reuse the execution plan of a request for the subsequent
calls. By default in ERDAS APOLLO, the WFS requests are converted
into "normal" SQL statements, not prepared statements. There are two
ways to switch to the prepared statements syntax. The first is to set the
GEOMTEXTSIZE parameter in your providers.fac to 1, instead of
the default 500 value. It will force the usage of prepared statements as
soon as a spatial filter is used in the request. The alternate solution is
an Oracle option, by setting the Oracle cursor_sharing parameter to
"force" in the relevant init.ora configuration. See http://www.quest-
pipelines.com/newsletter-v2/cursor_sharing.htm for more detail on that
option.

Tuning the Database
Indexes

1. If using WFS providers on top of Oracle 9i, 10g or 11g, check that the
indexes are properly defined and tuned:

• For non-spatial properties, those which are frequently used in
requests should be indexed to optimize searches.

• For Point geometric properties (SDO_GEOMETRY fields), Quad-
Tree indexes are the best, with appropriate SDO_LEVEL and
SDO_TILES parameters. Oracle provides a tool that analyses the
data and suggests the optimal parameters. Example: CREATE
INDEX ESA_FIRE_GEOM ON ESA_FIRE(GEOM) INDEXTYPE IS
MDSYS.SPATIAL_INDEX PARAMETERS('SDO_LEVEL=10').

• For other geometry types such as LineString, Polygons Oracle
recommends using R-Trees. They are easily created by avoiding
the SDO_TILES and SDO_LEVEL parameters in the index creation
query, for example: CREATE INDEX I_ANN_GEOM ON
ANNOTATION(ANN_GEOM) INDEXTYPE IS
MDSYS.SPATIAL_INDEX .

2. For Shapefiles providers, create an R-Tree index using ERDAS's
indexer tool (See Shapefile RTree Builder).

3. For PostgreSQL (or PostGIS) providers, three types of indexes can be
used: B-Tree, R-Tree, and GiST indexes.

152 Performance Tuning

Note that frequent updates i.e., insert, delete, in the PostgreSQL
database end up causing PostgreSQL to return strange and
inconsistent results. Is is recommended that the "vacuum"
command be run on the database, to clean up the deleted tuples in
the tables and fix the inconsistent results. This should be done
following a successful backup.

4. For ArcSDE providers, use the native "ArcSDE grid" spatial indexing
system or rely on the underlying database indexing systems (SDO or R-
Tree for Oracle Spatial, ...).

Tuning the Native
Request

A WMS GetMap request or a WFS GetFeature request will inevitably be
converted into a query in the native language of the RDBMS. For
Oracle, PostgreSQL and ArcSDE over Oracle or MS-SQL, the
underlying query is in SQL. There are several ways to optimize the
translation into native SQL query:

1. As explained in the first section, tune the GetMap request to limit the
number of servers invoked and the number of layers requested. Each
layer means one or more SQL queries the gain is obvious.

2. By default, a GetMap request will query ALL the columns of the table
mapped with the WMS layer. When mapping the GML feature type
definition to the database model, all of the columns do no have to be
mapped. Only expose the properties which make real sense to the user.
In particular, if only output maps, not feature collections, and simple
styling, i.e., no classification, labelling, etc., are required, restrict
exposure to the geometric set of columns possibly one or two others
which are useful. This will considerably reduce the volume of data
output from the database.

3. MapGen tags can be used to restrict requested properties. Be careful
to keep all tags used in the portrayal styles, as well as the geometry.
See The Map Generation Transformer on page 186 for more
information on how to use the MapGen tags.

4. When a complex mapping is configured (one feature type mapped to
more than one table), the service will often run several SQL queries for
each request received. Performance becomes critical if the
configuration is not optimal and indexes are not adequately created.
See Feature Mapping for more information on complex mappings.
When possible ERDAS recommends mapping one feature type to one
table or view. Use the view mechanism if several tables are needed.

5. The MapGen tags also permits applying additional filtering clauses, with
different expressions for each scale range using WHERE clauses.

Performance Tuning 153

6. By adding a GROUP BY clause to the native query, features can be
grouped into smaller sets using the MapGen tags.

Look at the servlet's log file, that contains the native SQL queries
sent to the database. Those queries can teach much about
performance.

7. ERDAS APOLLO 9.3 can switch from one DB table to another
depending on the scale factor given in the request. If several tables are
established, each having the same properties names but a different
content, the system calls the "lightest" table at the small scale first and
then progressively calls "heavier" tables at larger scales. See “Scale
Dependent Table” in the section The Map Generation Transformer on
page 186.

8. Use prepared statements. Oracle is able to optimize the execution of
the requests by calculating an Execution Plan before each request. This
plan allows optimization using indexes, triggers, etc. However when
each request is a literal with parts of it varying from one request to
another, no optimization is possible. On the other hand, if the variant of
the request is given as a set of parameters, named bind variables, the
literal part is unchanged from one request to the other and optimization
is possible. To activate preparedStatement use in the GetMap
requests, set the minimum number of coordinates necessary to convert
the request into a SQL query with prepared statements in the WFS to
one (1). The parameter looks like: <PARAM NAME="geomtextsize"
VALUE="1"/> . Note that the default value for that parameter is 500.

Tuning Portrayal
1. When designing portrayal styles for optimized performance follow these

drawing guidelines: lines of width=1, single color instead of a pattern,
no dashed lines are among the most impacting one.

2. If rendering geometries as symbols, favor SVG symbols over rasters
like GIF and JPG. Consider converting raster symbols into SVG format.

3. Anti-clashing is the function that moves some objects to avoid overlay
with others. This function slows down the process and is unjustified in
most case. ERDAS recommends de-activating it.

4. Anti-aliasing provides smooth images but is also time consuming. It can
be disabled through the ERDAS APOLLO Style Editor style properties
panels.

154 Performance Tuning

5. Favor Fast 2D rendering (using Java 2D internal mechanism instead of
going through the SVG-like tree. It does not apply to all cases of
portrayal but for simple styling you can activate it by setting the property
"parameters.directRenderingEnabled" to "true" in the Property style file.
Other restrictions on using the Fast 2D rendering are described in
"Portrayal Capabilities" and "Limitations".

6. At small scales, the level of detail in the rendering does not need to be
as high as at large scales. Adapting the portrayal style to use the scale
range will help. If server-side branching to one style or another is
required, a specific Java rule using the Developer option of ERDAS
APOLLO must be written.

7. Portraying on the client side means that a large volume of raw data
(GML) is transported to the client application. Portraying on the server
offers much faster output even though there is less flexibility on the
client side. When adding a layer to the client, favor calling the service
as a WMS instead of a WFS.

8. If addressing the service as a WFS and portray locally on the client side
is still desired, reduced volume of raw data can be obtained by
requesting the "Serialized Feature Collection" output format. The
parameter value is "SERFC". It produces a binary stream that is
encoded and decoded faster and has a much smaller volume than
XML-encoded GML that still needs to be decoded on the client side.

NOTE: This is not yet adopted as an OGC specification and it is
supported only by ERDAS's Web Services and its clients (Web
Client, Style Editor).

9. When the geometries are large, multi-geometries or containing many
points or lines, consider "generalizing" them, to lower the number of
vertices or edges before sending the GML data to the client. Today, the
generalization function can be explicitly called in a GetFeature request
but it means that the full geometry is transferred to the invoker before
being generalized. Therefore, it is best if a middleware application,
running on the same machine as the services, does the request. Also,
consider extending the portrayal rules to apply generalization when a
GetMap is executed.
An alternative is to apply the generalization mechanism and store the
generalized geometry as a new column in the table. Then, the MapGen
tags, will ensure this geometry is used in lieu of the original one, for
small scales.

10. SLD rules, while standard (OGC Specification), are more time-
consuming than Property styles. Keep SLD rules when sending with a
GetMap request but convert them into Property rules if they are
permanently stored on the server.

Performance Tuning 155

Tuning the Raster
Data Sources

1. Build a pyramidal provider that will address different mosaics
depending on the scale range. ERDAS APOLLO includes a tool that
takes an existing image or a set of tiled images and builds the mosaic
with varying precision for various scale ranges. See Typical Scenarios
and Assembling Services and Combining Data for instructions on
how to set up a Pyramid WMS.

2. Choose a format that is the fast to parse, ECW or IMG.

3. If the raster data behind a single provider are big, a gain in performance
can be realized by splitting them into tiles and having a IndexProvider
configured. This provider implies having a world file per tile, or that
information in the image header in case of GeoTIFF, and building the
index file, generally a GML file. See IndexProvider scenario for more
information on how to set up an IndexProvider.

Tuning Parameters
and Configuration
for WCS GIO
Decoders

ERDAS APOLLO adds support for new formats by adding new
decoders in the Coverage framework. GIO based WCS decoders are
coverage plug-ins into the WCS Coverage framework. The GIO
decoder is a complex raster sub-system by itself that feeds raster and
metadata of the imagery to the WMS and WCS services. GIO decoders
(Raster and Coverage decoder implementations) wrap native ERDAS
IMAGINE raster engine using JNI and use the NCI (Native Code
Isolation) framework to provide metadata and raster data.

As of APOLLO 11.0, the GIO decoders are not available on Linux
platforms.

NCI framework is a set of libraries for managing a pool of Java
processes (that use native code via JNI) isolated outside of a server
JVM.

The Raster Decoder Server (RDS) is an external process to access
raster datasets that can be pooled and managed using NCI Process
Manager service.The ProcessManager service is responsible for
spawning a new instance of RDS or utilizing one from a pool of existing
RDS process in order to fulfill imagery request. The datasets cached,
size of the pool, memory allocated, and other options are configurable
via the following files: rds.properties and processmanager.properties.

156 Performance Tuning

The rds.properties file is located in the file nci-rds.jar that can be
found in the directory <APOLLO_HOME>\tools\native\nci. To gain
access to the file you can use a compression tool like WinZip, 7zip,
WinRar, etc. Extract the rds.properties file, modify it and then
replace the original contents of the jar file with the modified file.

It's important to understand that the application server must be
stopped in order to modify the nci-rds.jar file. If the server is running
you will encounter problems trying to save the modified
rds.properties back into the jar as it will be in use by the RDS
process. Failure to stop the server prior to modifying the JAR may
result in corruption of the JAR and failure of the
application.rds.properties:

Table 7: rds.properties Configuration elements

Elements Description and examples

cache-these-many-datasets Limit the number of datasets in cache to this value.

cache-per-band(MB) Limit the number of blocks in cache, in Megabytes, so that it doesn't exceed
this value.

raster-heap-size(MB) Limit the maximum heap the native raster system can use. This helps prevent
out of memory issues especially when generating pyramids for stipped TIFFs
(or similar file formats) during crawling or serving WMS requests. Set to -1 if
you don't want to it to use maximum available memory

warn-virtual-memory(MB) This property is used by the native code when it reports the memory
consumption of the RDS. Start freeing up resources (shrink the cached
datasets) when the handle count reaches this value.

max-virtual-memory(MB) This property is used by the native code when it reports the memory
consumption of the RDS. Abort/quit RDS when the memory reaches this value.

warn-handle-count This property is used by the native code when it reports the memory
consumption of the RDS. Start freeing up resources (shrink the cached
datasets) when the handle count reaches this value

max-handle-count This property is used by the native code when it reports the memory
consumption of the RDS. Abort/quit RDS when the handle count exceeds this
value.

intf-impl Add the interface-implementation fully classified names separated by

hyphen ("-") as shown below:

intf-
impl=com.lggi.esp.coverage.decoder.raster.gio.GIORasterCoverageRemote-
com.lggi.esp.coverage.decoder.raster.gio.GIORasterCoverageRemoteImpl

Performance Tuning 157

global-
processmanager.propert
ies:

This file is mainly for properties that are required to start RDS (Raster
Data Server). The properties that exist in the file can be shared among
multiple nodes in a cluster.This file exists in the shared folder.

Table 8: global-processmanager.properties Configuration elements

Elements Description and examples

rds.max.read.threads Only for ImageX decoders for ECW/JP2 -
maximum number of processing threads.Default is
2.

rds.debugrds To enable debugging of the RDS process. Set to
true to enable debugging. Default is false.

rds.haltonstart Flag indicating if the RDS process should halt once
it has started. Used for debugging. The default is
false.

rds.max.pixel.request.size Defines the maximum pixel request that
GIORasterCoverageProxy can process. The
default value is 25000000.

rds.proxy.directory Defines the directory where proxy files are
generated after pyramid generation of datasets.

processmanager.min.process.count The minimum number of RDS processes to keep in
the pool for servicing requests. The default is 1. For
ImageX, the number is affected by
rds.max.read.threads.

processmanager.max.process.count The maximum number of RDS processes to keep in
the pool for servicing requests. The default is 5. For
ImageX, the number is affected by
rds.max.read.threads.

processmanager.keepalivetime.inmins The time in minutes that an RDS process should
remain in the pool before being cleaned up if there
is no activity. The default is 10.

processmanager.getprocess.timeout.inseconds The time in seconds between the
processmanager.getprocess.numentries properties
to get a free process from the pool. The default is
30.

processmanager.getprocess.delay.inseconds Deprecated

processmanager.getprocess.numretries When a request is received by the
ProcessManager, the number of times it will try to
get a free process from the pool of RDS processes
before failing and generating an exception. The
default is 2.

158 Performance Tuning

local-
processmanager.propert
ies:

This file (like global-processmanager.properties) also contains
properties required by RDS, but these properties are node specific. In
a cluster, different nodes have their own set of properties. This file
exists in <INSTALL_DIR>/jboss/server/{default} or
{cluster}/deploy/erdas-apollo.ear/erdas-apollo.war/WEB-INF/classes.

wait.time.before.killing.rds.if.not.responding Time in seconds that the ProcessMonitor waits for
an ACK before it terminates an RDS process. The
default is 10.

rds.gio.ecw.logging.level The logging level for ECW running in GIO. Valid
values are 0-3. Zero indicates to log only errors and
exception; three indicates verbose logging. The
default is 0.

Table 8: global-processmanager.properties Configuration elements (Continued)

Elements Description and examples

Table 9: local-processmanager.properties Configuration elements

Elements Description and examples

rds.classpath Defines the classpath for the use by RDS when a
new process is created. It references the .jar files
located in the <APOLLO_HOME>/rds directory by
default.

rds.security.policy Defines the default java security policy for access to
RDS resources.

rds.log4j.properties Defines logger configuration used by RDS for
logging errors. It is declarative by nature and can
be customized to use any of the valid loggers
provided by Log4J or a custom logger based on
Log4J api.

rds.java.home Specifies which jdk to use for rds gio processes.

rds.java64.home Specifies which 64-bit jdk to use for rds, such as
anything that can take advantage of 64-bit like
ImageX decoder.

rds.jvm.options Defines all JVM options used to fine tune the RDS
process. Each option is separated by a space.
Example: -Xms64m Xmx128m -
XX:+AggressiveOpts

rds.gio.ecw.log.file The log file for ECW running in GIO which logs any
exceptions.

Performance Tuning 159

Tuning the Execution
Environment

1. Java Virtual Machine (JVM) is the engine which activates the services
and executes the requests. Please use Sun JDK 1.6.

2. The more RAM and the higher the heap size (parameter -Xmx) set to
the JVM, the less swapping and garbage collection time will be
consumed. Except if you have a good expertise on application servers
tuning, DO NOT set the -Xms parameter, it often leads to worse
performance than if not set.

3. For heavy loaded services or large outputs, "OutOfMemory error"
messages may be encountered even though the -Xmx parameter is
properly set. Consider setting the "MaxPermSize" parameter as well, it
appears to help better use the heap size. When set as an option to the
Java program, the syntax is '-XX:MaxPermSize=128m' in order to set it
to 128 MebaBytes.

4. Servlet Engines are not all the same. Apache Tomcat is light and is one
of the most commonly used in the world. Application Servers (JBoss,
WebLogic) have a bigger infrastructure and more functionality, but
require more configuration and tuning. ERDAS APOLLO Server
supports the following Servlet Engines:

• Tomcat

• JBoss

• Oracle WebLogic

5. During setup, configuration and tuning of the web services, having
accurate logs help fine-tune the configuration. Following that, set the
log level to "Warning" or only "Error" in order to avoid writing hundreds
of lines of text in the log files. Still better, configure the web services to
log asynchronously using JMS, ideally in a JDBC source.

6. For large scale environments with 100's of requests per second,
consider using clustering solutions at the database level and/or at the
Application Server level.

7. Frequently updated files or directories, like the caching directory, the
data or log files, should be stored locally on the server machine rather
than on a network drive or path. It will limit the network traffic and ensure
those updates do not impact the response times.

160 Performance Tuning

Conclusions The figure below summarizes the various types of optimizations that
must be considered.

Figure 13: The GetMap optimizations with an Oracle source

Using Apache Ant to Rebuild the Webapps 161

Using Apache Ant to Rebuild the Webapps
The Ant script has been built during the installation and is located at
<APOLLO_HOME>/build.xml, in order to rebuild the webapps with their
default configuration at any time.

Ant is installed along with the product, in the tools/ant folder. For
automatic call of this tool, add
$APOLLO_SERVER_INSTALL/tools/ant/bin to your PATH.

To do this, enter ant (if it is in your PATH) or
<APOLLO_HOME>/tools/ant/bin/ant instead, in the prompt of
$APOLLO_SERVER_INSTALL directory as shown below:

Example:Rebuilding Webapps using Ant
ant tomcat6

Buildfile: build.xml

init:

tomcat6:

configure-eas-tomcat6:

init:

configure-tomcat6:

clean:
 [echo] erdas-apollo::clean - remove temporary/intermediate
files

setup-default:
 [echo] erdas-apollo::setup-default - copy and configure
default webapp to b
uild dir
 [mkdir] Created dir: $APOLLO_SERVER_INSTALL\webapps\erdas-
apollo\build
 [copy] Warning: $APOLLO_SERVER_INSTALL\webapps\erdas-
apollo\default not found.

build-erdas-apollo:

configure-eas-full:
 [copy] Copying 825 files to
$APOLLO_SERVER_INSTALL\webapps\erdas-apollo\build
 [copy] Copied 183 empty directories to 1 empty directory
under $APOLLO_SERVER_INSTALL\webapps\erdas-apollo\build

configure-eas-light:

162 Using Apache Ant to Rebuild the Webapps

configure-eas:

copy-custom-providers-resources:

replace-tokens:

build-eas-tomcat6:

package:
 [delete] Deleting: $APOLLO_SERVER_INSTALL\dist\tomcat6\erdas-
apollo.war
 [zip] Building zip:
$APOLLO_SERVER_INSTALL\dist\tomcat6\erdas-apollo.war
 [delete] Deleting directory
$APOLLO_SERVER_INSTALL\webapps\erdas-apollo\build

clean:
 [echo] apollo-client::clean - remove temporary/intermediate
files

setup-default:
 [echo] apollo-client::setup-default - copy and configure
default webapp to
build dir
 [mkdir] Created dir: $APOLLO_SERVER_INSTALL\webapps\apollo-
client\build
 [copy] Copying 1668 files to
$APOLLO_SERVER_INSTALL\webapps\apollo-client\build

build-erdas-apollo:

replace-tokens:

build-eas-tomcat6:

package:
 [delete] Deleting:
$APOLLO_SERVER_INSTALL\dist\tomcat6\apollo-client.war
 [zip] Building zip:
$APOLLO_SERVER_INSTALL\dist\tomcat6\apollo-client.war
 [delete] Deleting directory
$APOLLO_SERVER_INSTALL\webapps\apollo-client\build

BUILD SUCCESSFUL
Total time: 2 minutes 34 seconds

If you want to build the webapps for other application server, you
just have to use a goal other than the default one:

• generic: generate war files for generic application servers

• jboss: generate ear files for the JBoss 4.2 application server

• tomcat6: generate war files for the Tomcat 6 application server

Using Apache Ant to Rebuild the Webapps 163

• weblogic: generate war files for the WebLogic 10.3 application
server

164 Deploying WAR Files on Supported Servlet Engines

Deploying WAR Files on Supported Servlet
Engines

Web Applications are commonly packaged as a single file with the
".war" extension. During installation of your ERDAS APOLLO Server,
the webapps are automatically generated and stored in the installation
directory. The way to deploy one or more of those web applications in
a servlet engine is specific to each of those products. This chapter gives
guidelines on how to deploy your applications in some of the supported
servlet engines.

As soon as something has to be modified in your web app (new license,
patched library, ...), you first need to update the expanded directories in
the installation directory. Then, you have to rebuild your war files and
redeploy them. To rebuild the war files, see Using Apache Ant to
Rebuild the Webapps.

JBoss See the deployment on JBoss in the ERDAS APOLLO QuickStart
Guide.

Jakarta Tomcat See the deployment on Tomcat in the ERDAS APOLLO QuickStart
Guide.

ERDAS APOLLO Tools and Viewers 165

ERDAS APOLLO Tools and Viewers

This chapter uses Unix syntax and scripts, generally suffixed by .sh
when providing examples of commands. If using a Windows
platform, remove the suffix or replace it with .bat.

Service Tester The Service Tester runs as a Java Applet in the Web browser. It allows
building and sending OGC-WMS and OGC-WFS requests to any
compliant server. You must install the JAVA plug-in for your web
browser. Refer to the JAVA website for the plug-in installer for your
browser. The Service Tester tool is available at:
http://myhost:80/erdas-apollo/servicetester/index.html and an
extensive online help provides a complete description of its
functionality. The screenshot below is an example of what the tool looks
like.

Figure 14: Service Tester applet

166 ERDAS APOLLO Tools and Viewers

Some typical use scenarios of the Service Tester are:

1. In the server list zone, select "ERDAS Basic WFS on ATLANTA" and
click the "Select Server" button.

You will find it at: http://myhost:80/erdas-
apollo/servicetester/index.html.

2. In the templates zone, select "WFS POST capabilities" and click on the
"View template" button. The request appears in the "Request" zone.

3. Click on "DoPost". The response, and XML document, appears in the
"Result" zone.

4. The server URL can be encoded manually in the bottom text field.

5. Manually type the request in the "Request" zone.

Customizing Service
Tester Templates

Since ERDAS APOLLO 9.3, the set of templates available in the lower-
left zone of the tool can be customized.

The list of templates is configured in a text file, located in a sub-directory
relative to the tool's HTML page under
com/ionicsoft/wfs/tester/template. The default text file name is
templates.txt but this name can be changed through the
TEMPLATEFILE" parameter in the tool's HTML page. Note that the
template file name can be changed but not its location.

By default, the template file contains a set of templates which are stored
in the postapplet.jar archive located in the same directory as the
tool's HTML page. It is possible to extract some of those templates and
change them or create custom ones. In this latter case, it will be
necessary to update the templates.txt file to mention the custom
templates. Templates can be removed from the list.

The template directory also contains a 'servers.txt' file,
corresponding to the "SERVERLIST" parameter in the tool's HTML
page. This file contains a list of predefined services that appear in
the lower zone of the tool. List of visible services can be changed
either in the HTML page or in that file.

ERDAS APOLLO Tools and Viewers 167

Data Indexer In order to publish a seamless collection of images or coverages, first
configure each of them individually, format, world file, extent, etc., and
then add an indexing system on top to allow fast and efficient extraction
of the relevant items. To build those indexes as well as allow fast search
in Shapefile documents, various tools are provided as part of the
distribution:

• Indexing a set of coverages using a WFS.

• Indexing a Shapefile

Image Indexing with the
Data Manager

Once a collection of images has been established, possibly with their
respective world file, they can be viewed either as single images in a
WMS, either as a set of layers, one per image or as a seamless
collection of images. For those last two cases, the images need to be
indexed so that at runtime the WMS can rapidly find each image based
on the indexing properties. The Data Manager can be used to achieve
this indexing, through the "Index Data" checkbox in the Create Service
wizard. The indexing operation takes place as soon as you click the
Finish button at the end of the wizard.

Coverage Indexer Along with the dataset files, there can be metadata files (See the WCS
Provider types for more information on coverage metadata
configuration). To index them, use the Data Manager GUI.

Shapefile RTree Builder In order to handle spatial data efficiently, a database system needs an
indexing mechanism that will help it retrieve data items quickly
according to their spatial location. However, traditional indexing
methods, e.g., linear, hash, B-Tree, Quad-Tree are not well-suited for
data objects located in multi-dimensional spaces. The schema below
shows how R-Tree with is dynamic index structure meets this need.

168 ERDAS APOLLO Tools and Viewers

Figure 15: RTree Structure

An R-tree is a height-balanced tree similar to a B-Tree with records in
its leaf nodes containing pointers to data objects in the database. A n-
dimensional rectangle determines the bounding box of the indexed
spatial object. Each parent node entry contains the smallest rectangle
that spatially surrounds all rectangles in the child node as shown in the
schema above.

The RTree Builder tool creates a file with the name of the Shapefile and
the .rtr extension. That file, named "index file" allows faster searches in
the data, thanks to the "RTree" indexing mechanism.

The RTree Builder tool is part of the command-line tools provided in the
distribution. It is also available behind the "Index Data" link in the
Administration Console when managing a ShapeFile provider. To use
the command-line tool, open a console window. If <APOLLO_HOME>
represents the directory in which ERDAS APOLLO was installed, type:

cd <APOLLO_HOME>/tools/ows
./runrtreebuilder.sh <APOLLO_HOME>/data/erdas-
apollo/shapes/atlanta roads 30 15

Running the script with no argument will produce an explanation of
each command:

ERDAS APOLLO Tools and Viewers 169

Usage :com.ionicsoft.wfs.provider.shapev2.RTreeBuilder basedir
shapename maxcapacity mincapacity
basedir : base directory of the shape files
shapename : the shape file name pattern (without any extension)
maxcapacity : RTree maximum node capacity
mincapacity : RTree minimum node capacity
Example : com.ionicsoft.wfs.provider.shapev2.RTreeBuilder
 <APOLLO_HOME>\data\erdas-apollo\shapes\atlanta
futurelanduse 6 3

A recent performance analysis indicates that the values '100, 50'
are best choice for most types of data.

Vector Services
Utilities

At the time of setting up a ERDAS WFS provider, you need to have an
XML Schema document for your feature types and a mapping
document for the servlet to achieve the correspondence between your
schema and the data source. In addition to the automatic generation
capabilities found in the Administration Console, various command-line
tools allow to build those documents as well as copy some data from
one vector source to another.

Schema Generator This tool is part of the command-line tools provided in the distribution.
Its role is to build the database generation script based on a given XML
Schema of feature types. It exists for two databases: Oracle and
PostgreSQL.

To use it, open a console window. If <APOLLO_HOME> represents the
directory in which ERDAS APOLLO Server was installed, for Oracle
type:

cd <APOLLO_HOME>/tools/ows
cp <APOLLO_HOME>/config/erdas-
apollo/providers/vector/boston_ora.* .
./runoraschemagen.sh -schema boston_ora.xsd -mapping
boston_ora.xml -out boston_ora.sql

For PostgreSQL, the script is named runpgschemagen.sh.

Running the script with no argument will produce an explanation of
each command:

command line arguments are
Common options
 -schema SCHEMAURL [-mapping MAPPINGURL]
where SCHEMAURL is a URL to the schema file
where MAPPINGURL is a URL to the mapping file
-verbose to output more information

170 ERDAS APOLLO Tools and Viewers

-forceauto to use an auto mapping if none is provided
-usetargetspace to dump types belonging to the schema target
namespace
-ignoreknowntypes to ignore types derived from feature
association , geometry property types...
-usepkstring to specify the use of a string as the primary key
type in mapping auto SQL generation options
-bestfit tries to only use types reachable from the schema target
namespace
-out to output to the given file in utf-8 format
SQL generation options:

-intermedia to generate Oracle Intermedia compatible layout
-remove to generate remove orders
-delete to generate delete orders
-lock to generate the tables used in the lock mechanism (no other
option is required)
Mapping generation options:

-autogen to generate autogen mapping
Autogen Specific options:

-infogen to generate info section with all operations enabled if
not present
-srs SRS to specify an srs for the info gen section
-allowfidinsertion to allow the insertion of fid during insert
operation
-lax to apply the laxist GML model verification (see also the
allowLAXGMLModel mapping tag)

The output of the command is displayed in the file which name is
prefixed with "-out", or on the standard output.

From-SQL Generator This tool is able to build mapping and schema files based on database
models. It currently supports six data source types: Oracle,
PostgreSQL, ESRI Shapefile, ESRI ArcSDE, Microsoft SQL Server
2008, and DGN files (through the FIO plug-in). For each database type,
a different script is executed. That tool is also accessible through the
Data Manager when managing vector services: the "Create Types and
Mapping" link executes the same processing.

To use the command-line tool, open a console window. If
<APOLLO_HOME> represents the directory in which ERDAS APOLLO
Server was installed, for Oracle data type:

cd <APOLLO_HOME>/tools/ows
./runfromsqlora.sh

ERDAS APOLLO Tools and Viewers 171

Running the script with no argument will produce an explanation of
each command:

It is important to understand that the -connection option lets you add
other parameters such as -schema, -srs, -gml3, ... so that you can have
a mapping and a types file built from just a connection to the database.
In counterpart, the -factory option starts from a pre-defined provider,
with a mapping and types file already built. And those additional
parameters, instead of being passed as arguments to the command,
are taken from the existing files. The main use case for this -factory
option is to build a more complete and explicit mapping file based on a
simple one such as one expression and SQL mapping.

Example:

cd <APOLLO_HOME>/tools/ows
./runfromsqlora.sh -connection
oracle://myhost/user+myuser/password+mypassword/SID+mysid
-table ROADS -schema ATLANTA -mappingfile roads_map -typefile
roads_typ -srs EPSG:2240 -gml3 -agressive

command line arguments are
-connection CONURL -table TEMPLATE [-schema SCHEMA][-mappingfile MF] [-typefile TF]
[-srs SRS] [-gml3] [-cl x] [-agressive] [-deprecated]
or
-factory FACFILE -name NAME -table TEMPLATE [-mappingfile MF] [-typefile TF]
or (for Shapefiles)
-PATH LOCAL -MULTIPATH MULTIPATH -table TEMPLATE [-schema SCHEMA][-mappingfile MF]
[-typefile TF] [-srs SRS] [-gml3] [-cl x] [-agressive] [-deprecated]
where CONURL is the connection string
where FACFILE is the factory file
where NAME is the provider name
where LOCAL is the path to the shapefiles directory (only applies to generator based
on Shapefiles)
where MULTIPATH is a semi-colon-separated set of paths (this parameter has precedence
on the "PATH" parameter)
where TEMPLATE is a table template (accepts '%', a single name or a comma separated
list)
where SCHEMA is the schema name
where SRS is the default srs to use (syntax can be code:value or
urn:opengis:def:crs:...)
where SRSOVER allows to force the overwrite flag and ignore the data SRS
where MF is the output mapping file (default is mapping.xml)
where TF is the output types file (default is types.xsd)
where gmlX is gml3 to target gml3 feature model, gml3.2 to target gml3.2 feature
model
where cl is the GML-Simple Profile conformance level
where agressive scans the SQL source to set the geometry type
where deprecated allows the use of gml3 deprecated geometries

172 ERDAS APOLLO Tools and Viewers

• For Oracle data, the -table and -schema arguments values must be
uppercase.

• For PostgreSQL data, the script is named runfromsqlpg.sh.
The -table and -schema arguments values must have the exact
case (generally, lowercase).

• For Microsoft SQL Server 2008 data, the script is named
runfromsqlsqlserver.sh.

• For ESRI ArcSDE data, the script is named runfromsqlsde.sh.

For ArcSDE connections to succeed, add the jsdeXX_sdk.jar file
(and possibly the jpeXX_sdk.jar and icu4j.jar files) provided with
the ESRI ArcSDE product in the <APOLLO_HOME>/tools/ows/lib
directory. XX stands for the ArcSDE version.

• For Shapefile data, the script is named runfromsqlshp.sh. The -
table values must be lowercase.

For this tool to successfully run on Shapefiles, reference a factory
file (parameter -factory) with an entry for the shapefiles, or use the
-PATH or -MULTIPATH parameter for a local shapefile directory.

• For DGN V7 and V8 data, the script is named runfromsqlfme.bat.

Remarks:

• The produced mapping file contains all the columns from the table.
Manually remove the columns that are not to be published.

• The mapping file does not mention a Primary key column. It is set
to <NoPrimary>. This can be replaced with a tag that has an actual
set of columns that will be used to produce the "fid" or "gml:id"
attribute.

• The mapping table does not mention any <Lock> column needed
for transactional feature types.

• The mapping and types files are overridden if they exist.

• The mapping and types file paths can use absolute or relative paths,
relative being relative to the tool directory. ".." can be used, and
under Windows, "/" or "\" or mixed.

ERDAS APOLLO Tools and Viewers 173

• The srs parameter is used to fill the mapping file with the Bounding
Box information. The syntax used for the srs parameter will be set
into the mapping file, either code:value or urn:opengis:def:crs:... .
For databases where the srs value is set in the database (in
ArcSDE, for example), the srs given as argument will be added to
the mapping file. The original srs will be set first, unless the -srsover
is set to true. In that case, only the srs given as argument is added
to the mapping file. In addition, the “overwrite” attribute of the
<SRS> element is set to true.

• The set permitted Operation is "Query". This needs to be changed
if transactions are to be allowed.

• If some of the published columns from the mapping file are
removed, also remove the published properties from the schema
file.

• Under Oracle, the schema file gives geometries a type named
"gml:GeometryAssociationType" or "gml:GeometryPropertyType" if
the -gml3 option is used. Replace it with the actual geometry
property type: gml:PointPropertyType,
gml:LineStringPropertyType, gml:PolygonPropertyType or Multi-*
geometry property types as described in the OGC WFS 1.0.0
specification. An alternative is to use the -agressive option to let the
tool guess the appropriate geometry type.

• The GML-Simple Feature profile option (-cl n) only produces valid
output if combined with the -gml3 option. The "n" argument is the
conformance level, which value can be 0, 1 or 2. Currently ERDAS
APOLLO produces the same output whatever level is chosen.

• An alternative to the command-line From-SQL generator tools is to
use the Data Manager, in which the action "Create Types and
Mappings" does the same job as those command-line tools.

WFS Loader Often WFS feature collections, available either as GML files or in a
WFS, need to be populated in another WFS. The WFS Loader tool
helps achieve this transfer operation.

The WFS Loader tool is located in the <APOLLO_HOME>/tools/ows
directory and can be executed from the system's command prompt. As
soon as an instructions file (see below) has been completed and is
passed as argument to the tool, run this tool in a console window to load
features into the chosen WFS.

Sample request:

cd <APOLLO_HOME>/tools/ows
./runwfsloader.sh ./xmlscripts/GML2WFST.xml

174 ERDAS APOLLO Tools and Viewers

Configuration of the input feature collection and the output WFS-T:

The configuration of the input feature collection and destination WFS-T
can be accomplished by setting up an XML file, named XML Script. A
set of sample scripts are provided in the distribution, under
<APOLLO_HOME>/tools/ows/xmlscripts. In this directory, the
GML2WFST.xml script allows the population of a set of GML files into
a WFS-T. The WFS2WFST.xml script extracts the features from a WFS
to load them into the WFS-T. The following example displays the
content of the GML2WFST.xml script for a fictive set of sample data
intended to populate a set of GML files.

<SCRIPT>
<!-- this script must be executed from the
<APOLLO_HOME>/tools/ows directory -->
 <TRACE VALUE="*" />
 <DEFINELOG
 TYPE="FILE"
 FILENAME="./xmlscripts/gml2wfstlog"
 FILESIZE="5000000"
 MAXFILE="10"
 ENABLE="*"
 ERRORLEVEL="100"
 />

<!-- Relative "file" url is relative to the current directory
when running the command -->
 <Factory NAME="file:///./providers.fac" />

 <FeatureServer ID="FS" NAME="MY_WFST_ORA" />

<!-- We loop in a gml files directory -->

 <LOOPDIR VALUE="../../data/erdas-apollo/gml" ID="GML_FILE" >

 <Load FROM="GML_FILE" SCHEMA="FS" ID="FC1" ZIP="false"
COUNT="true" />

 <Insert SIZE="1" ERROR="false" >
 <PARAM VALUE="FS" />
 <PARAM VALUE="FC1" />
 </Insert>

 </LOOPDIR>

<!-- The <LOOPDIR> block can be repeated with other directories
-->

 <Destroy NAME="FS" />
</SCRIPT>

ERDAS APOLLO Tools and Viewers 175

XML Scripts Structure

The general structure is:

<SCRIPT>
 <TRACE ... />
 <DEFINELOG>
 ...
 </DEFINELOG>
 <Factory ... />
 <FeatureServer ... />
 <LOOPDIR ... >
 <Load ... />
 <Insert ... >
 </Insert>
 </LOOPDIR>
 <Destroy ... />
</SCRIPT>

The starting XML tag is always <SCRIPT> and the corresponding
ending tag is </SCRIPT>.

The first two tags, namely <TRACE> and <DEFINELOG> are for
logging and debugging purposes. This allows for the storage of
information useful for debugging and system checks in log files.

To set the level of debug information required for all subsequent
instructions in the script set the <TRACE> tags. The debug levels are:
info, warning, minor, fatal, debug. The level "*" signifies that all
debugging information is to be displayed.

The <DEFINELOG> tag sets the log file and log level to be used when
the subsequent Feature Servers are invoked. This tag has the same
role and attributes as the <LOGCONFIG> tag found in the ERDAS Web
Services providers.fac files. See Servlet-Specific Configuration
Parameters (providers fac). This tag, when defined, will replace the
setting in the default providers.fac files, thus grouping the logging
information in a single file that is bound to the tool.

The next two tags, <Factory> and <FeatureServer>, relate to the
destination WFS-T.

The <Factory> tag references the WFS configuration file, generally
named providers.fac, that is used to access a WFS. In the example
above, the file that must be referenced by a URL is named wfs.fac and
it is in the current directory <APOLLO_HOME>/tools/ows. This file
contains the definition of one or more WFS providers: provider type,
connection string to a database, mapping and schema files. See Data
services for more information about WFS provider configurations.

176 ERDAS APOLLO Tools and Viewers

The <FeatureServer> tag allows opening a connection to a given WFS,
identified by its provider name (the NAME attribute), and by the
previous <Factory> definition. The "ID" attribute will contain an identifier
that will be used in subsequent instructions.

The next tag, <LOOPDIR>, allows looping in the given directory as well
as applying the actions defined in the block between <LOOPDIR> and
</LOOPDIR>. The "VALUE" attribute provides the GML files with a
directory path. The "ID" attribute is an identifier that will be used in
subsequent instructions.

Note that if there are several GML files directories, the <LOOPDIR>
block can be repeated.

In the loop, call the <Load> instruction to load the feature collection from
a GML file. Then, call the <Insert> instruction to save this collection into
the destination WFS.

The <Load> tag attributes reference the current GML directory. The
"FROM" attribute is the looping variable in the GML directory. The
features are loaded and validated against the Feature Types schema
defined for the feature server referenced by the "SCHEMA" attribute.
Do not compress the data (ZIP ="false") but make a count of the
features (COUNT="true"). The loaded feature collection will have the
"FC1" identifier.

The <Insert> tag saves the collection, referenced through the tag
<PARAM VALUE="FC1"/>, into the WFS which is referenced by the tag
<PARAM VALUE="FS" />. Note that the <Insert> tag has a "SIZE"
attribute set to "1" and an "ERROR" attribute set to "false". This means
that one feature will be saved at a time. The failing inserts will be logged
but they will not interrupt the process. Once the features are set, the
SIZE value can be raised to decrease the uploading time.

The last tag, <Destroy>, will release the feature server connection.

Customized Configuration of the WFS Loader Tool

1. Update the wfs.fac file to have a provider correspond to the WFS.
ERDAS recommends defining a new provider with the proper
connection string and the appropriate schema and mapping files.
Ensure that the database tables are created before running the script
including the "LOCKTIMEOUT" table used for WFS Locking. Check
also that the mapping file allows the "Insert" operation to be performed
on the features types to use.

2. Put the GML files in one or more directories under
<APOLLO_HOME>/tools/ows/xmlscripts and check that the feature
definition corresponds to the schema of the WFS.

ERDAS APOLLO Tools and Viewers 177

3. Duplicate the GML2WFST.xml files and update the copy to adapt the
<FeatureServer> and <LOOPDIR> tags according to steps 1 and 2.

4. Run the "runwfsloader" tool and pass it as argument the URL to the
XML script either using an absolute URL (file:/// ...) or a relative path
(./xmlscripts/...).

Features in a WFS

If the features are in a WFS instead of in a directory of GML files, it will
be necessary to execute a GetFeature request on the originating WFS
to place the resulting feature collection in the destination WFS-T.

A sample script corresponding to this situation is located at
<APOLLO_HOME>/tools/ows/xmlscripts/WFS2WFST.xml. The code
is:

<SCRIPT>

 <TRACE VALUE="*" />

 <DEFINELOG
 TYPE="FILE"
 FILENAME="./xmlscripts/wfs2wfstlog"
 FILESIZE="1000000"
 MAXFILE="10"
 ENABLE="*"
 />

 <Factory NAME="file:///../../config/erdas-
apollo/providers/vector/providers.fac" />
 <FeatureServer NAME="ATLANTA_VECTOR" ID="FSFROM" />
 <FeatureServer NAME="TARGET_WFST" ID="FSTO" />

 <DefineRequest ID="R" >
 <GetFeature xmlns:gml="http://www.opengis.net/gml"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:wfs="http://www.opengis.net/wfs">
 <wfs:Query typeName="roads" >
 <ogc:PropertyName>*</ogc:PropertyName>
 </wfs:Query>
 </GetFeature>
 </DefineRequest>

 <GetFeature ID="FC1" COUNT="true" >
 <PARAM VALUE="FSFROM"/>
 <PARAM VALUE="R"/>
 </GetFeature>

 <Insert >
 <PARAM VALUE="FSTO" />
 <PARAM VALUE="FC1" />
 </Insert>

178 ERDAS APOLLO Tools and Viewers

 <Destroy NAME="FC1" />
 <Destroy NAME="FSFROM" />
 <Destroy NAME="FSTO" />

</SCRIPT>

In this script, a second <FeatureServer> tag has been defined for the
originating WFS (ATLANTA_VECTOR). The same definition rules
apply to this tag as for the destination WFS, except that this WFS does
not need to be transactional.

A <DefineRequest> tag, which is an OGC-WFS GetFeature request,
has been used to define the extraction request.

The query is actually executed through a subsequent <GetFeature> tag
that references the WFS ID (FSFROM) and the DefineRequest ID (R).
The resulting feature collection is given an ID (FC1), so that it can be
used in the subsequent <Insert> instruction.

The ending <Destroy> tag has been repeated for each WFS and
feature collection.

Pyramid and
Mosaic Builder

When rich or complex data (vector, coverages, imagery) are available
but someone just wants to serve basemaps, it is necessary to reduce
or tune the data size or quality by building a pyramid or creating raster
tiles based on an existing WMS. The following tools each allow to
produce a set of images suitable for basemaps.

Pyramid Builder This tool is able to create a pyramid of GeoTIFF images. The resulting
pyramid can be used to setup a high-speed WMS on a layer of images.

The pyramid builder takes a directory of images, any format ERDAS
Image Server supports, and builds n- layers of GeoTIFF files, each of
these layers being decimated at a different level. The decimation level
is the integer number by which the pixel width and height of each image
will be divided to create the level of the pyramid. From one level to
another, the tool uses the bilinear interpolation method.

From a performance point of view, it is not worth building a pyramid with
lots of small images at one level. The tool is able to cluster the images
if their pixel width or height is smaller than a specified value. The empty
spaces in the mosaic will be filled with the color defined by the '-bc'
parameter.

SYNOPSIS

runpyramid.sh -d [SOURCE FILE/DIRECTORY] -o [OUTPUT DIRECTORY] -
s [SOURCE SRS] -m [MINIMUM IMAGE SIZE]

ERDAS APOLLO Tools and Viewers 179

 -bc ([RED],[GREEN],[BLUE]) [DECIMATION
LEVEL],[DECIMATION LEVEL], ... ,[DECIMATION LEVEL]

DESCRIPTION

create a pyramid of geotiff images, using images from [SOURCE
DIRECTORY]
source images srs is [SOURCE SRS], result images pixel size is
at least [MINIMUM IMAGE SIZE]
create one directory per [DECIMATION LEVEL] with image resolution
1/[DECIMATION LEVEL]
[DECIMATION LEVEL] should be an integer greater than 0, default
is 1

 -d source directory or source file, required
 -o output directory, optional
 -s source srs, required except if source files are valid Geotiff
 -m cluster the result layer of geotiff images, if their pixel
sizes are smaller than [MINIMUM IMAGE SIZE], optional
 -bc background color used for the clustering,
[RED],[GREEN],[BLUE] are values between 0 and 255, default value
is (0,0,0), optional

For example, A user wants to create a pyramid from a layer of 9 images,
each one is 20000*10000 pixels.

cd <APOLLO_HOME>/tools/ows
./runpyramid.sh -d ./layer/ -o ./pyramid/ -s EPSG:26910 1,4,16,64

This command will create 4 directories, each one with 9 GeoTIFF files
of sizes: (20000,10000), (5000,2500), (1250,625), (312,156). The
images at the highest level of the pyramid are small, which is not
optimal. The user can use the "-m" cluster option to avoid this:

./runpyramid.sh -d ./layer/ -o ./pyramid/ -s EPSG:26910 -m 400 -bc
(255,255,255) 1,4,16,64

The highest level of the pyramid will then be clustered, producing a
single GeoTIFF file of size (937*468). The empty spaces in the mosaic
will be filled with the white color.

WMS Tiler This tool produces a mosaic of Geotiff image tiles based on a request
to a remote WMS service. The tool provides a wide set of options to let
you accurately define the size of each tile, its accuracy, the scale at
which the maps are extracted from the remote service,

In a second phase, the produced tiles can be indexed and then exposed
as a new WMS service, which could provide much better performance
than the original WMS, either because that original service is not always
available, or because it manages vector or coverage data which are
often overrated when a basemap is expected.

180 ERDAS APOLLO Tools and Viewers

Note that this tool, if executed several times with a different scale value,
will let you build a pyramid of tiles which content varies from one scale
range to another. At the most, you could use as remote WMS a WMS
over an OGC Web Map Context, this context addressing several
different WMSes.

NAME

 WMSTiler: create Geotiff images tiles from a remote WMS

 SYNOPSIS

 ./runwmstiler.sh -box [xmin],[ymin],[xmax],[ymax] -srs [srs]
-scale [scale]
 -tile [xSize],[ySize] -buffer [percent]
 -url [WMS url] -layers [layername1],...,[layernameN]
 -styles [stylename1],...,[stylenameN]
 -dir [out directory path] -file [output root file
name]
 -thread [thread count] -noclobber [true|false]

 DESCRIPTION

 create Geotiff images tiles from remote WMS layers (-url, -
layers and -styles parameters).
 The tool will create (h*v) Geotiff files of pixel sizes
defined by the -tile parameter.
 Each tile will cover the exact area necessary to match exactly
the scale (-scale).
 The numbers of tiles are computed so that the whole layer
will cover at least the defined bbox (-box and -srs).
 Tile request bounding boxes are increased by a percentage (-
buffer), then cropped.
 Each tile is written into a directory (-dir) using the name
[-file]_xindex_yindex.

 -box the box to cover
 -srs the request srs (expressed as EPSG:code)
 -scale the scale denominator of the resulting layer tiles
(e.g. 100000)
 -tile the pixel sizes of the resulting tiles (default is
512,512)
 -buffer the percentage of buffering around the requested tiles
(between 0 and 1, default is 0.25)
 -url the url of the source wms
 -layers the list of source wms layer names
 -styles the list of source wms layer styles (default is
default)
 -dir the output directory path
 -file the output tiles root file name (default is [WMS
name]_Tile)
 -thread the number of threads, default is one
 -noclobber if true, existing tiles will not be re-
fetched/overwritten, default is false

 EXAMPLE

ERDAS APOLLO Tools and Viewers 181

 ./runwmstiler.sh -box -180,-90,180,90 -srs EPSG:4326 -scale
170640906 -tile 256,256
 -buffer 0.25 -url http://myhost:80/erdas-
apollo/vector/WORLDWIDE
 -layers cities,admin98 -dir ./WMSTilerTest

Catalog Web
Interface

The Catalog Web Interface is a web application offering to users the
ability to manage - publish, search and browse - their data. It also offers
administration tools for the Catalog service.

Basic workflows on this Catalog Web Interface are introduced in the
User guide.

Log In to the Web
Application

If browsing data is accessible for everyone, several operations are
limited to users who are logged in (f.i. publishing content, detailed in
Publishing content).

To log in to the application, you need credentials (login and password).
These credentials allow you to fetch some corresponding roles that are
needed to activate some specific actions of the web interface.

The login process itself is explained in Authentication.

Searching and Browsing
Content

Browsing the catalog is available from the Browse page (see upper left
of the web interface). This page shows a form containing a drop-down
list and a text field.

This form is quite simple to use. The drop-down list enables the user to
filter his search to specific object type. Available types are: All,
Services, WFS, WMS, WCS, Feature Types, Map Layers and
Coverages.

In the text field, the user can enters keywords matching data that need
to be discovered. Those keywords can be specified using advanced
formatting and facilities. Here is an excerpt:

Table 10: Keywords Operators for Advanced Searches

Symbol Usage Effect

AND Between two keywords. Logical AND. Example: "road AND
Atlanta".

OR Between two keywords. Logical OR. Example: "road OR Atlanta".

() Surrounding keywords. Logical Group. Example: "(road OR
Atlanta) AND city".

182 ERDAS APOLLO Tools and Viewers

Advanced Search The advanced search panel can be opened by clicking the arrow on the
left edge of the browse panel.

Figure 16: Advanced Search

This panel offers sorting options and also a tree view of the object types
available in the catalog. Single clicking on an object type will search for
records of that type. Double clicking displays the definition of the object
type itself.

Use the contextual help (by pressing CTRL+ALT) to have more
information on that panel.

Publishing content This enables users to save their data into the catalog using an address
and a corresponding type.

The user is considered as the owner of data published that way. It
means that he's the only person (except the administrator) allowed to
delete or refresh (re-publish) them. Those actions are displayed in the
web interface using simple links:

ERDAS APOLLO Tools and Viewers 183

Figure 17: Advanced Operations

The process is explained in Publish a service.

Testing the CSW
endpoint

When authenticated with admin role, a 'CSW' tab appears at the top left
of the web interface, linking to a CSW testing page.

This page offers a way to send CSW requests directly to the CSW
ebRIM endpoint of the Catalog, sitting at
http://<serverURL>/erdas-apollo/catalog/csw.

Figure 18: CSW Panel

184 ERDAS APOLLO Tools and Viewers

The left panel can be used to edit CSW requests. When clicking on
'Post request', the request will be sent to the server, and the response
from the server will be displayed in the right panel. A set of typical CSW
requests are available in the drop down below the left form.

On the upper right of the page, a panel indicates the status of the CSW
endpoint, i.e. whether it is started or not, together with a button to force
a restart of the CSW endpoint. It must be noted that the CSW endpoint
will start automatically on demand; this status and button are for debug
purposes only, to force a restart and a cache flush of the CSW stack.

Administration options The catalog web interface offers as well some facilities to manage the
catalog. Those functionalities are in the Admin page (see upper left of
the web interface).

Only users with an 'admin' role can access this page: if the user don't
have this role, the Admin link is hidden to him.

Here are the functionalities:

• See the list of the roles.

• Re-index the keywords: this operation is helpful if, for whatever
reason, the lucene index is not synchronized anymore with the
catalog content. The main case is to be able to move the server
without having to move the lucene index as well.

• Manage DB schemas: this displays a page that lists the currently
installed DB schema(s) and their version. If the current DB schema
is not in sync with the APOLLO software version, this page allows
you to run the upgrade process.

The administrator's activity scope is extended to the data rights. Indeed,
the administrator has all rights on data: he can delete or refresh
everything, even he is not the owner of data.

ERDAS APOLLO Tools and Viewers 185

Specifying the
Storage
Directories for
Metadata,
Thumbnails, &
Pyramids

The ERDAS APOLLO system uses files to store information about the
thumbnails, pyramid layers for catalog items, metadata for catalog
items, and the output from geoprocesses executed in the web client. By
default, those files are located in the directories specified in the table
below.

To store these files in different directories, you will need to edit some
files in ERDAS APOLLO.

Changing the Storage
Location for Metadata
Files

1. Navigate to the directory
<APOLLO_HOME>\config\erdas-apollo\
providers\coverage.

2. Open the file providers.fac.

3. At the bottom of that file, you will find a block of configuration
parameters.
Find the one that says METADATA TEMPLATE
.

Table 11: Location of Metadata, Pyramid Layer, Thumbnail, and Geoprocess
Output Files

Resource Name Directory

Thumbnails <APOLLO_HOME>\storage\coverage\EAIM

Pyramid Layers <APOLLO_HOME>\storage\pyramids\EAIM

Metadata <APOLLO_HOME>\storage\metadata\coverage\EAIM

WPS Output <APOLLO_HOME>\storage\wps\isms\process_output

186 ERDAS APOLLO Tools and Viewers

4. Change the directory currently specified to the directory where you
want ERDAS APOLLO to store your metadata files.

5. Save file providers.fac file and close it.

If you have already started your application server, you will need to
restart it for the change you just made to take effect.

Changing the Storage
Location for Thumbnail
Files

1. Navigate to the directory
<APOLLO_HOME>\config\erdas-apollo\
providers\coverage.

2. Open the file providers.fac.

3. At the bottom of that file, you will find a block of configuration
parameters.
Find the one the one that says LEGEND TEMPLATE.

4. Change the directory currently specified to the directory where you
want ERDAS APOLLO to store your thumbnail files.

5. Save the providers.fac file and close it.

If you have already started your application server, you will need to
restart it for the change you just made to take effect.

ERDAS APOLLO Tools and Viewers 187

Changing the Storage
Location for Pyramid
Files

The storage location for pyramid files is defined in three separate files:

• im-providers.fac

• rds.policy

• processmanager.properties

If you want to change the storage location of your pyramid files, you will
have to change the definitions in each one of these files in order for
pyramid handling to continue to work properly.

Changing the Pyramid Storage Location in im-providers.fac

1. Navigate to the directory
<APOLLO_HOME>\config\erdas-apollo\
providers\coverage.

2. Open the file im-providers.fac.

There are two different blocks of settings in this file. One set is for users
who are logged in to the APOLLO system. The other set is for users
who are not logged in to the ERDAS APOLLO system. You must
change the pyramid storage location in both blocks of settings in order
for your system to work properly. You must also specify the same path
in both blocks of settings.

188 ERDAS APOLLO Tools and Viewers

To change the pyramid storage location in the block of settings for users
who are logged in to the system:

1. Find the PyramidDir parameter inside the EAIM block of settings.

2. Replace the directory path in the PyramidDir parameter with the
path to the location where you want to store the pyramid files.

ERDAS APOLLO Tools and Viewers 189

To change the pyramid storage location in the block of settings for users
who are not logged in to the system:

1. Find the PyramidDir parameter inside the EAIM_PUBLIC block of
settings.

2. Replace the directory path in the PyramidDir parameter with the
path to the location where you want to store the pyramid files.

3. Save file im-providers.fac file and close it.

190 ERDAS APOLLO Tools and Viewers

Changing the Pyramid Storage Location in rds.policy

1. Navigate to the directory
<APOLLO_HOME>\tools\native\nci.

2. Open the file rds.policy.

3. Find the line that contains the path to the previous pyramid storage
directory.

4. This entire line is actually pointing to a directory called proxy that
exists inside the original pyramid storage directory. You need to
change this line so that it points to a directory called proxy inside
the new pyramid storage directory.

You can accomplish this by just changing part A shown in the
diagram above. This is the path to the pyramid storage directory.
Do not change part B.

Inside this file, paths must be written using ${\} as the path separator
rather than just the \ path separator that you typically use to write a
Windows path.

5. Save and close the rds.policy file.

Changing the Pyramid Storage Location in processmanager.properties

1. If you are using JBoss as your application server, navigate to the
directory
<APOLLO_HOME>\jboss\server\default\deploy\
erdas-apollo.ear\erdas-apollo.war\WEB-INF\classes.

If you are using WebLogic as your application server, navigate to
the directory
<APOLLO_HOME>\dist\weblogic\
erdas-apollo.ear\erdas-apollo.war\WEB-INF\classes

ERDAS APOLLO Tools and Viewers 191

Open the file local-processmanager.properties.

General Server
Configuration

Install Properties The install.properties file contains a lot of the most basic options
that control how your ERDAS APOLLO Server product will work. These
options were initially set by the installer program when you installed
ERDAS APOLLO. All of the information

This file is located directly inside of the <APOLLO_HOME> directory.

The following table shows the properties that you can change in the file
and describes the behavior that the property controls.

Table 12: Customizable Parameters in the Install.Properties File

Property Name Description

platform.home The ERDAS APOLLO installation directory.

apollo.server.host server host name

apollo.server.port server port number

apollo.shutdown.port server shutdown port number

apollo.server.admin. port server administration port number

192 ERDAS APOLLO Tools and Viewers

apollo.providers.vector.home path to directory containing providers.fac for
vector (WFS) offerings

apollo.providers.map.home path to directory containing providers.fac for
map (WMS) offerings

apollo.providers.coverage.home path to directory containing providers.fac for
coverage (WCS) offerings

apollo.providers.process.home path to directory containing providers.fac for
process (WPS) offerings

apollo.providers.wrs.home path to directory containing providers.fac for
catalog (WRS) offerings

apollo.providers.admin.home path to directory containing providers.fac for
administration

apollo.im.home home directory for image management
components (usually installation directory)

apollo.webapp.hostAndPort commented out by default

apollo.webapp.name commented out by default

hibernate.connection.driver_class type of database connection for Hibernate, e.g.
org.postgresql.Driver

hibernate.connection.url connect string to database for Hibernate

hibernate.connection.username database connection username for Hibernate

hibernate.connection.password database connection password for Hibernate

babel.home home directory for Babel catalog components
(usually installation directory)

apollo.server.home

release.babel.hibernate.dialect dialect for database connections, e.g.
com.erdas.rsp.hibernate.postgis.PostgisDialect

release.babel.jdbc.driver.fqn name of JDBC driver for Babel database
connection

release.babel.db.user user id for Babel database connection

release.babel.db.password password for Babel database connection

release.babel.db.url connect string to database for Babel

babel.hibernate.dialect dialect for Babel Hibernate database
connection, e.g.
com.erdas.rsp.hibernate.postgis.PostgisDialect

babel.db.user user ID for Babel database connection

Table 12: Customizable Parameters in the Install.Properties File

Property Name Description

ERDAS APOLLO Tools and Viewers 193

babel.db.password password for Babel database connection

babel.db.url connect string to database for Babel

babel.jdbc.driver.fqn

babel.db.host host name for Babel database connection

babel.db.port port number for Babel database connection

babel.db.sid database SID for Babel database connection

babel.log.home

ionic.catalog.product.name

apollo.java.home JAVA Home for ERDAS APOLLO

eaim.server.home home directory for image management
components (usually installation directory)

eaim.server.host host name for image management service

eaim.server.port host port for image management service

eaim.server.smtp.host host for SMTP connection

eaim.server.smtp.port port for SMTP connection

eaim.server.smtp.user user ID for SMTP connection

eaim.server.wcs.url URL for WCS service

eaim.server.wrs.url URL for WRS service

eaim.server.wfs.url URL for WFS service

eaim.server.wps.url URL for WPS service

eaim.server.wps.transientprovider.url URL for transient WMS providers used by WPS

eaim.server.catalog.url URL for ERDAS APOLLO Catalog service

eaim.server.clipzipship.url URL for Clip/Zip/Ship service

eaim.server.quartzinterface.url URL for Quartz interface

eaim.server.crawler.user user ID for crawling

eaim.server.crawler.pass password for crawling

eaim.server.quartz.jdbc.delegate.class class name for Quartz JDBC connection

apollo.im.home installation directory

gio.home path to GIO

platform.gio.home also path to GIO

Table 12: Customizable Parameters in the Install.Properties File

Property Name Description

194 ERDAS APOLLO Tools and Viewers

Hiding Clear Text
Passwords in
Configuration
Files

The passwords that are used to gain access to the ERDAS APOLLO
Server and the ERDAS APOLLO database are stored in the
configuration files in clear text and are shown in exactly as you typed
them in.

If this is a security concern for your organization, you can hide these
passwords.

Server Configuration Files

Some of the passwords are stored in ERDAS APOLLO Server
configuration files for use by the system. You can encrypt the
passwords in these files so that the system can still read them, but a
human reader will not be able to read them and know exactly what they
are.

platform.gio.arch processor architecture for GIO

platform.gio.arch.mode

eaim.server.streamedraster.access.url URL for streamed (ECWP) raster access

eaim.server.streamedraster.access.enabled if True, ECWP access is enabled

eaim.server.wps.gio.exedir executable directory for WPS GIO

eaim.server.wps.gio.ismsdir ISMS directory for WPS GIO

eaim.server.wps.gio.name name of WPS GIO

eaim.server.wps.gio.exe executable for WPS GIO

eaim.server.iws.home path to IWS components, usually something
like {$platform.home}/tools/native/iws

ic.context.path path to default context file

ic.logging.type web client logging type (e.g. FILE)

apollo.client.components name of properties file containing components
information for apollo client (file must be in
classpath). By default either apollo-im-
components.properties (Professional) or apollo-
im-components.properties (Essentials SDI)

apollo.client.contexts name of properties file containing context
information for apollo client (file must be in
classpath)

Table 12: Customizable Parameters in the Install.Properties File

Property Name Description

ERDAS APOLLO Tools and Viewers 195

The application server that you are using for ERDAS APOLLO Server
determines which server configuration files contain passwords.

If you are using JBoss, the password is always found in the files
apollo-ds.xml and server.properties.

If you are using WebLogic, it is only found in the server.properties
file.

To encrypt the ERDAS APOLLO database password in the
configuration file apollo-login-config.xml:

1. Navigate to the directory
<APOLLO_HOME>/jboss/server/default/conf.

2. Open the file apollo-login-config.xml for editing.

3. Open a command line window.

4. Navigate to the directory <APOLLO_HOME>\jboss.

5. Type in the following command at the prompt (or find it in the file
apollo-login-config.xml and copy and paste it).
Substitute the clear text database password for the
<CLEAR_TEXT_PASSWORD> placeholder.

This will invoke the JBoss secure identity login module, which will
encrypt your clear text password.

6. The secure identity login module displays the encrypted password
in the command line window.

Leave the command line window open. You will need it again in
one of the next steps.

java -cp lib/jboss-common.jar;lib/jboss-jmx.jar;server/default/lib/jbosssx.jar;
server/default/lib/jboss-jca.jar
org.jboss.resource.security.SecureIdentityLoginModule <CLEAR_TEXT_PASSWORD>

196 ERDAS APOLLO Tools and Viewers

7. Place this encrypted password inside the highlighted locations
inside the apollo-login-config.xml file.

8. Save and close the apollo-login-config.xml file.

To encrypt the ERDAS APOLLO system passwords in the configuration
file server.properties:

1. Open a command line window
(or go to the one that is already open).

2. Navigate to the directory
<APOLLO_HOME>/tools/password-encoder

3. Type encrypter.bat at the prompt and press Enter.
This runs the password encoder tool, which will prompt for a clear
text password.

ERDAS APOLLO Tools and Viewers 197

4. The tool will encrypt the password you entered and display it in the
command line window.

5. You will need to use this tool to encrypt your admin password and
your public password.

6. Navigate to the directory <APOLLO_HOME>/config/erdas-apollo.

7. Right-click on the file global-server.properties and select
Open With > Wordpad in the menu that appears.

8. Find the property password.encryption.enabled.
It is located at the very top of the file.

Uncomment that property by removing the # in front of it.

198 ERDAS APOLLO Tools and Viewers

9. Find the property com.lggi.esp.crawlers.login.password.
Change the value for that property from the clear text admin
password to the encrypted admin password you obtained when you
ran the password encoder tool.

10. Find the property anonymous.login.password.
Change the value for that property from the clear text public
password to the encrypted public password you obtained when you
ran the password encoder tool.

NOTE: Although the public password is only used internally by the
ERDAS APOLLO system to grant guest access to unauthenticated
users and cannot provide access to sensitive information, you must
encrypt it as well when you set the password.encryption.enabled
property to true.

11. After you change both the apollo-login-config.xml and
global-server.properties files, you will need to restart the
JBoss application server.

Administrative Tools Configuration Files

In the build.properties file located in the directory
<APOLLO_HOME>/tools/schema-generator, the passwords are
stored so that if you ever need to use the ant tool to rebuild
erdas-apollo.ear or apollo-client.war, the correct passwords will
be included in the newly built files. To hide these passwords, you can
simply save a copy of this file to a secure location and delete it from the
directory <APOLLO_HOME>/tools/schema-generator. Restore it to its
normal location if and when you need to use the ant tool to rebuild.

In the build.properties file located in the directory
<APOLLO_HOME>/tools/harvester-console, the APOLLO admin
password is stored for the process of harvesting services from an older
version of ERDAS APOLLO and placing them in the catalog for ERDAS
APOLLO 2010 or higher. After you initially upgrade to ERDAS APOLLO
2010, you probably will not need this file again, but you should still save
it to a safe location in case something happens to your catalog and you
need to rebuild it. After a copy of the file is saved in the safe location,
you can delete it from the directory
<APOLLO_HOME>/tools/harvester-console and restore it to its
normal location if and when you need to rebuild the catalog.

ERDAS APOLLO Tools and Viewers 199

Configuration and
Customization

Internationalization When you install ERDAS APOLLO, the language of the ERDAS
APOLLO Web Client defaults to the locale of the server computer from
which the ERDAS APOLLO Web Client is served, and if that information
is not present, it defaults to American English. The ERDAS APOLLO
Web Client includes a drop-down box in the upper right corner that
allows the user to explicitly choose the presentation language of the
ERDAS APOLLO Web Client from the given choices of English, French,
German, Polish, Dutch, Japanese, or Chinese. If you select another
presentation language, that language will be used for the duration of the
session.

You can configure the ERDAS APOLLO Web Client to open with the
language you choose, and you can also add support for additional
languages.

In order to perform these customizations, you need to know which files
the ERDAS APOLLO Web Client uses to store the language
information. All of the language files for the ERDAS APOLLO Web
Client are located in the directory
<APOLLO_HOME>/webapps/apollo-client/default/
WEB-INF/classes.

The files are:

• tilapia.properties - contains the setting for the default
language for the ERDAS APOLLO Web Client.

• apollo-client.properties - contains a list of all the
languages supported by the ERDAS APOLLO Web Client.

• tilapia-i18n.properties (English)

OR
tilapia-i18n_xx.properties
language file for the Toolkit where xx = fr (French), de
(German), pl (Polish), nl (Dutch), ja (Japanese), or zh (Chinese).

200 ERDAS APOLLO Tools and Viewers

• apollo-client-i18n.properties

OR
apollo-client-i18n_xx.properties
Language file for the ERDAS APOLLO Web Client where xx =
fr (French), de (German), pl (Polish), nl (Dutch), ja (Japanese),
or zh (Chinese).

NOTE: “i18n” is an abbreviation for Internationalization denoted by the
18 letters between the first “I” and the last “n”.

Change the Default Language

ERDAS APOLLO reads a setting in a file to determine which files it
should read to obtain the labels for the controls. You can change this
setting and direct ERDAS APOLLO to use a different set of language
files. If you want to use a language other than those listed above, create
the language files before you change this setting.

1. Navigate to the directory
<APOLLO_HOME>/webapps/apollo-client/default/
WEB-INF/classes.

2. Open the file tilapia.properties.

3. Find the two lines shown below.

4. Enter the desired locale code after locale.default=.

5. Uncomment (activate) the locale.default property by removing the
in front of the property.

6. Save and close tilapia.properties.

7. Restart the application server.

Additional Languages

You can customize your ERDAS APOLLO Web Client to support any
language whose characters can be represented in Unicode.

If you are using the ERDAS APOLLO Web Client, create new tilapia-
i18n and apollo-client-i18n language files for your language and add
this new language to the list of supported languages in the apollo-
client.properties file.

Set a default locale for the application
locale.default=

ERDAS APOLLO Tools and Viewers 201

If you are only using the Web Toolkit create a new tilapia language file.
You will not need to create a new apollo-client language file, because it
only contains labels for the ERDAS APOLLO Web Client. You also will
not need to add this new language to the list of supported languages in
apollo-client.properties.

After you create and edit the necessary files, you will need to rebuild the
apollo-client.war file and redeploy it to your application server.

Create new language files

1. Navigate to the directory
<APOLLO_HOME>/webapps/apollo-client/default/
WEB-INF/classes.

2. Create an empty tilapia_i18n_xx.properties file (and a apollo-
client-i18n_XX.properties file if you are translating the web client),
where xx is a two-letter code that represents the name of the
language. Look up the ISO 3166 codes for the translated language
at
http://www.iso.org/iso/english_country_names_and_code_
elements.

3. Access http://<APOLLO_HOME>/apollo-
client/tools/i18n.jsp and the I18n Helper Tool opens. The tool
shows the strings that need a translation and the strings that are
already written in the i18n.properties file for all loaded locales.

202 ERDAS APOLLO Tools and Viewers

4. Enter each translated text in the box to the right of the English
version of the text. Duplicate any formatting place holders such
as%s or %d. These place holders must remain intact to hold strings
and numeric values.

5. When complete, click Save at the bottom of the page. The tool
downloads your changes to a zip file with one or both of the
following entries (depending on what strings you translated).

• tilapia-i18n.changes (for the Web Toolkit)

• apollo-client-i18n.changes (for the ERDAS APOLLO Web
Client)

6. Copy the *.changes file(s) to your tilapia-i18n-xx.properties or
apollo-client-i18n-xx.properties files accordingly.

Add to the list of supported languages

1. Navigate to the directory
<APOLLO_HOME>/webapps/apollo-client/default/
WEB-INF/classes.

2. Open the file apollo-client.properties.

ERDAS APOLLO Tools and Viewers 203

3. Find the lines shown below.

Add another line with the locale.info property, and set the value of the
property using the following format:

<LANGUAGE_CODE>|<LANGUAGE_NAME>

where <LANGUAGE_CODE> matches with the code you used to
represent the language within the file name and <LANGUAGE_NAME>
is the name of the language that appears in the dropdown box on the
ERDAS APOLLO Web Client that will allow the user to select the
presentation language.

Note that the name of the language must be expressed using only
ASCII characters and Unicode escape (\uXXXX) characters.

If you added Spanish to the list, the list would look like the following:

Rebuild/Redeploy the apollo-client.war file

1. Create an ANT_HOME system variable with the path to the
directory <APOLLO_HOME>/tools/ant/bin.

2. After you have created the system variable, open a command line
window and type:

cd <APOLLO_HOME>/tools/ant/bin <press ENTER>
ant tomcat55 <press ENTER>

The argument of the "ant" call should indicate the name of the
application server that you are using.

You can open and read the build.xml file located in the
<APOLLO_HOME> directory to obtain the correct argument for your
application server.

Locales
locale.info=EN|English
locale.info=FR|Fran\u00e7ais
locale.info=DE|Deutsch

Locales
locale.info=EN|English
locale.info=FR|Fran\u00e7ais
locale.info=DE|Deutsch
locale.info=ES|Espa\u00a4ol

204 ERDAS APOLLO Tools and Viewers

3. Wait until the build is successful, then go to the directory
<APOLLO_HOME>/dist/<APPSERVER_NAME> and copy the file
apollo-client.war.

4. Redeploy the new apollo-client.war file for your application
server.

For JBoss
Paste into the directory
<APOLLO_HOME>/jboss/server/default/deploy

For Tomcat (5.5 and 6)
Paste into the directory <APOLLO_HOME>/tomcat/webapps

5. Restart the application server.

ERDAS APOLLO Web
Client Configuration

The files that make up the ERDAS APOLLO Web Client are placed
together in the directory <APOLLO_HOME>/webapps/apollo-client
when you install the ERDAS APOLLO Server.

Many customers like to customize their web clients. To do this, you will
need to open the <APOLLO_HOME>/webapps/apollo-client
directory, find the file or files that contain the properties you want to
change, and make the required changes. After you have changed all of
the files, you will need to run an Apache Ant script that will compress
that directory into a Web ARchive (WAR) file. That war file is deployed
to the application server that you are using for the ERDAS APOLLO
Server.

If you need to use the ERDAS TITAN client for WPS execution, do
not remove the APOLLO-CLIENT.WAR from the ERDAS APOLLO
Application Server.

ERDAS APOLLO Tools and Viewers 205

Properties Files

The ERDAS APOLLO Web Client uses a number of .properties files to
store configuration parameters.

Anything you type in these properties files may potentially be
viewable by anyone who can view the ERDAS APOLLO Web
Client online. Do not put any information you want to keep
confidential inside these files!

Default Hierarchy

The root.properties file is in WEB-INF/classes/tilapia.properties
(this is hard-coded). All properties files need to be in the classpath (such
as in WEB-INF/classes).

• tilapia.properties

• apollo-client.properties

• apollo-client-contexts.properties (specified in a
tryimport in apollo-client.properties)

• apollo-im-components.properties or
apollo-server-components.properties (specified in a
tryimport in apollo-client.properties)

Entries

Name Description Note

tryimport look for the specified file in the
classpath and if it is there, import it
as an additional properties file

feature.panel.config feature panel configuration as
described in the ERDAS APOLLO
Solutions Toolkit Main Guide,
Section 3.6.5.2.4

locale.default Default locale - see
Internationalization on page 199

i18n.files Location for internationalization
files - see Internationalization on
page 199

layerinfohandlers.wfshandler.maxf
eatures

Maximum number of features to
display in the Layer Info tool

206 ERDAS APOLLO Tools and Viewers

metadata.tc211.stylesheet

metadata.stylesheet.iso19139 The path to the XSL file for
displaying ISO19139 metadata

editors.timestameintervaleditor.dat
eoffset

The default date offset (in days)
between the start and end date

context.startup Context files that appear in the
Context list

context.overview.default Path to the default context file

jsonhelper.ident Indentation of the JSON output in
the logs

log.type Type of log (such as FILE, etc.)

log.enable Enable the log

log.filename Path to log file, such as
/temp/mylog

log.maxfile Number of log files to create (the
logger will create new log files as
needed, cycling from mylog0 to
mylogmaxfile -1)

log.filesize Maximum size of log file in bytes
before a new log file is created

service.ias.url IAS URL see eaim.server.wcs.url

service.catalog.url Catalog URL see eaim.server.catalog.url

service.wrs.url WRS URL see eaim.server.wrs.url

service.wps.url WPS URL see eaim.server.wps.url

service.clipzipship.url Clip/Zip/Ship service URL (see
eaim.server.clipzipship.url)

service.quartzinterface.url Quartz JSON Interface URL (see
eaim.server.quartzinterface.url)

service.wrs.type WRS type: Babel or RSCatalog

service.streamedraster.access.ena
bled

True: streaming (ECWP) access
enabled

see
eaim.server.streamedraster.access.en
abled

service.streamedraster.access.url URL for streaming (ECWP) access see
eaim.server.streamedraster.access.url

service.ias.iso19115Xslt Path to the XSL file for displaying
ISO19115 metadata (can be
undefined)

Name Description Note

ERDAS APOLLO Tools and Viewers 207

service.ias.queryables Path to the XML file containing
Queryables information

modules.search.layers.assumeER
DAS

If set to True, assume
modules.search.layers references
a WFS from ERDAS (allows
optimizations)

modules.search.layers.useWms If set to True, if the
modules.search.layers WFS server
exposes a WMS interface it be
used for rendering

thumbnail.width Width of thumbnails in pixels

thumbnail.height Height of thumbnails in pixels

thumbnail.create If set to True, automatically create
new thumbnails

mail.smtp.host SMTP host for Clip/Zip/Ship
messages

see eaim.server.smtp.host

mail.smtp.port SMTP host for Clip/Zip/Ship
messages

see eaim.server.smtp.port

mail.smtp.user SMTP host for Clip/Zip/Ship
messages

see eaim.server.smtp.user

ui.objectinspector.defaultresultsper
page

Default number of results to display
in object inspectors

modules.search.max.nb.results Maximum number of search results
(-1 for unlimited)

modules.search.thumbnail.popup if set to True, display thumbnails in
the popup when hovering over a
result

modules.search.thumbnail.details if set to True, display thumbnails in
the extended details panel

scripts.bundles.desc path to the file containing the
description of custom modules

wms.imageformat sets default file format for WMS
requests

valid: image/gif, image/png, image/jpeg

Name Description Note

208 ERDAS APOLLO Tools and Viewers

Components

Components are discrete parts of the web client application that can be
added or removed independently. The installer provides two files,
apollo-im-components.properties for Professional and
apollo-server-components.properties for Essentials-SDI. It may
be desirable to remove components by deleting or commenting out their
entries. Alternatively, a different properties file containing components
information can by provided by providing a different tryimport entry in
apollo-client.properties.

Available components:

• Browse: The Browse tab, which allows the user to:

• see all of the known services in tree form

• add new services

• create new transient services by uploading data from the
local file system

• Edit: The Edit tab for viewing and editing features stored in a
WFS

• Filter: The Filter tab for viewing and modifying the filter on a
WFS layer

• Search: The Search tab allowing the user to search the catalog
for available resources

• OverviewMap: The Overview Map displaying a large scale
overview of the user's current map view

• WPS: The Process tab for managing WPS processes

• DownloadImagery: The Download tab for managing images for
the Clip/Zip/Ship operation

Entry Usage

components.active each entry will be added to the application on
startup

components.search.typesfilter the entries that appear in the "types" dropdown list
in the Search panel

components.search.defaulttyp
e

the "types" entry that is selected by default in the
Search panel

ERDAS APOLLO Tools and Viewers 209

Contexts

The ERDAS APOLLO Web Client provides a tool that allows users to
pick from a list of predefined context files. By convention this list is
populated from entries in apollo-client-contexts.properties. An
example is provided in
apollo-client-contexts-samples.properties. The first entry will
be loaded at application startup by default. The format for these entries
is pipe (|) delimited as follows:

• context.startup
<path>|<title>|<documentation-page>|<overview-map-path>

• path
the path to the context file, such as /context/default-basemap.xml

• title
the title that will appear in the dropdown list, such as "Default
Basemap"

• documentation page
the path to an HTML page providing additional details of the context
file (can be blank)

• overview map path
the path to the context file that will be used in the overview map. If
blank, defaults to ic.context.path

210 ERDAS APOLLO Tools and Viewers

The ERDAS APOLLO Style Editor 211

The ERDAS APOLLO Style Editor
ERDAS APOLLO Style Editor is a Java Swing client that can be used
to both explore and style geographical data. The ERDAS APOLLO
Style Editor can access OpenGIS services such as Web Map Servers,
Web Feature Servers, Web Coverage Servers. The ERDAS APOLLO
Style Editor also helps in the creation of styles which are used to render
maps by the Portrayal Service.

Exploring Data This section gives a first introduction of the ERDAS APOLLO Style
Editor user interface. You will learn how to manipulate data sources,
apply them to your project and navigate through the data.

Getting started

Starting the ERDAS APOLLO Style Editor

Once installed, you can start ERDAS APOLLO Style Editor in the
following way:

• On Windows platforms: Double-click the ERDAS APOLLO Style
Editor icon located on your desktop (if you choose to create a
desktop shortcut during the installation) or use the Start menu.

• On UNIX platforms: cd to the directory where you installed ERDAS
APOLLO Style Editor and type ./styleeditor.sh.

After the splash screen, you should see the ERDAS APOLLO Style
Editor main window described in the next section.

The ERDAS APOLLO Style Editor Main Window Described

The following picture presents the tool's main window. Note that the
data presented here varies according to your copy of ERDAS APOLLO
Style Editor and how you obtained it.

212 The ERDAS APOLLO Style Editor

Figure 19: ERDAS APOLLO Style Editor Main Window

• presents the current project structure as a tree. This panel
shows all the data sources you added to the project: WFS, SHAPE
files, WMS, georeferenced images, WCS, ... Please refer to Data
Sources for more information.

• is the map panel. Unless you specified a particular device
screen (see Views for more information about device screens), the
map panel will be resized when the main window is resized.

• shows the list of layers that have been added to the preview
together with buttons to reorder the list and remove layers from the
preview. Please refer to the Layers for more information.

• is the undockable ERDAS APOLLO Style Editor toolbar that
exposes several icons whose functions are described in the Map
Navigation.

The ERDAS APOLLO Style Editor 213

• is a collapsible overview area that shows the currently
displayed box on the whole world as a yellow area or as a red cross.
Refer to Map Overview for more information.

• shows a status bar with information such as cursor coordinates
or measured lengths and areas. It contains a split pane which allows
you to reveal the Scale Range Manager described in Scale Range
Management.

• presents the different views on the project as a range of tabs,
as described in Views.

• shows the ERDAS APOLLO Server logo which indicates the
tool activity. The logo gets animated while ERDAS APOLLO Style
Editor is performing an operation. Note that the current operation
can be canceled at any time by pressing the Stop button .

• in the left corner of the status bar, this button gives you access
to the Status History where you can consult the previous performed
tasks.

Configuration

This section explains how to personalize some of the options ERDAS
APOLLO Style Editor uses to determine its behavior. The options are
placed in the Style Editor Preferences window, accessible in the tools
menu.

Figure 20: Preferences item in the Tools menu

214 The ERDAS APOLLO Style Editor

Figure 21: Preferences Window

 HTTP Connection Timeout

This option determines the maximum time ERDAS APOLLO Style
Editor waits for a server response. Selecting a time limit is useful to
prevent situations where ERDAS APOLLO Style Editor would be kept
waiting forever for a non-responsive server. The initial value is already
set to produce reasonable behavior with the majority of the situations.
Expert users may want to adjust the value, and even deactivate it, to
meet more specific situations.

Procedure Setting the
Connection Time-out

1. Select the Preferences option from the Tools menu.

2. In the HTTP group, use the checkbox to activate or deactivate the
Connection Time-out.

3. Set the text field with the desired value in milliseconds.

This initial value is set to 15000 milliseconds.

Logging

ERDAS APOLLO Style Editor automatically creates log files you can
consult, for instance to view the generated map requests. By default,
the files have a prefix log , and are placed in the preferences folder.

Procedure Setting the Log Path

1. Select the Preferences item from the Tools menu.

2. In the Prefix text field, set the path and prefix for the log files.

The ERDAS APOLLO Style Editor 215

Managing Projects

ERDAS APOLLO Style Editor stores its configuration in a centralized
file called a project file. The project file contains information such as:

• a list of different views, each representing a map

• a list of data sources

• a list of layers

• style configuration

• miscellaneous settings

Project files are associated with the .gar extension.

Project management (new, open, ...) is carried-out throughout the File
menu.

Figure 22: The File Menu

Creating a New Project

To create a new project, select New Project in the File menu. A new,
empty, project will be created in a new window.

When you start ERDAS APOLLO Style Editor (except for the very first
time), a new blank project is opened for you to work with.

216 The ERDAS APOLLO Style Editor

To use your new project, you may want to start adding data
sources. Read the next sections of this guide to learn how to add
data sources.

Opening an Existing Project

To open an existing project, select Open... from the File menu. When
asked to choose a file, select a project file with an extension of .gar or
.styler . Typically, the projects are stored in the " projects "
subfolder of your ERDAS APOLLO Style Editor installation.

Figure 23: Open Project

You can also open a project using the "Open Recent >" menu item,
which allows a direct access to the 10 most recently opened projects.

Figure 24: Open Recent Project

The ERDAS APOLLO Style Editor 217

Data Sources

Kinds of Data Sources

A data source is an OpenGIS/ISO compliant service or a GIS resource
such as a local Shapefiles directory. Data sources are used by the
ERDAS APOLLO Style Editor to render maps, but also to query them
about their capabilities, the list of layers from a WMS, feature
descriptions from a WFS, etc.

The current version of ERDAS APOLLO Style Editor supports the
following data sources.

• Remote WFS through the HTTP protocol

• Local Feature Server, from a .fac file

• Local Shapefiles directory

• Remote WMS through HTTP

• Local georeferenced image

• Remote WCS with remote CPS

• OpenGIS WMS Contexts

Adding a Data Source

Adding a data source, whatever its type, is accomplished by using the
Data menu shown below:

Figure 25: Data Menu

The next sections present the detailed procedure for each data source
type.

Adding Features Resources

This section explains how to add remote OpenGIS/ISO Web Feature
Servers and Shapefiles directory to the project.

218 The ERDAS APOLLO Style Editor

Procedure Adding Features Resources

1. Choose Data/Add Data Source... in the menu then choose either to
add a WFS, a Local Feature Server or a collection of Shapefiles located
in a given directory.

Figure 26: Add Data Source

2. Select the type of feature service to access:

• Adding a Web Feature Server

- To add a reference to a remote Web Feature Server, select Web
Feature Server (HTTP):

- In the next panel, enter the service URL and click the Add
button, or choose a previously entered URL from the list. Note
that all valid URLs are automatically collected for future usage.

The ERDAS APOLLO Style Editor 219

Figure 27: Attach a Newap Feature Server - Step 2

- You then have to provide both a Name and a Title for the
service. Name is used in styles in order to achieve the mapping
between a service and a rule bundle while title is the human-
readable title that will be displayed in the Project Structure
panel.

The Name must be in lowercase and must correspond to the name
of the provider specified in the configuration of the WFS. Please
refer to Servlet-Specific Configuration Parameters (providers
fac).

220 The ERDAS APOLLO Style Editor

Figure 28: Attach a New Feature Server - Step 2

- Click the Finish button.

• Adding a Local Feature Server

- Choose Local Feature Server.
- You may directly insert the path to the intended feature, select

the " ... " button to browse your files or choose one feature from
the data source history list.

- Select Finish.

• Adding Shapefiles

- To add a collection of Shapefiles, choose Shapefile Directory.
- First choose a directory that contains Shapefiles (common

extensions are .shp, .shx, .dbf).
- Since Shapefiles do not export any SRS information, you have

to manually specify the native SRS in which your data is
expressed.

The drop-down list of SRS is an history of your previous selections,
not a list of suggested SRS for the given Shapefiles directory.

The ERDAS APOLLO Style Editor 221

Figure 29: Add Shapefiles

- In the next panel, enter a Name for your data source.

The Name must be in lowercase and must correspond to the name
of the provider that will be used when configuring your Portrayal
Service.

Adding Raster Resources

This section explains how to add remote OpenGIS/ISO Web Map
Servers and local georeferenced images to the project.

Procedure Adding Raster Resources

1. Choose Data/Add Map Source... in the menu then choose either to
add a WMS or a georeferenced image located in a given directory.

222 The ERDAS APOLLO Style Editor

Figure 30: Add Map Server

2. Adding a Web Map Server - To add a reference to a remote Web Map
Server, select the corresponding radio button then follow these steps:

• In the next panel, enter the service URL and click the Add button,
or choose a previously entered URL from the list. Note that all valid
URLs are automatically collected for future usage.

Figure 31: Attach a New Map Server

• Click the Finish button.

3. Adding a Local Georeferenced Image - To add a georeferenced image,
choose the corresponding radio button then fill in the following panel:

The ERDAS APOLLO Style Editor 223

Georeferenced image are not being saved in the project file in this
version of ERDAS APOLLO Style Editor. You will need to manually
add them on every new launch of the program.

• First select a georeferenced image from your hard disk.

• Manually specify the native SRS of the image, even if your
georeferenced image already defines an SRS.

The drop-down list of SRS is an history of your previous selections,
not a list of suggested SRS for the given georeferenced image.

Figure 32: Attach a Georeferenced Image

• Select a provider mode. Please refer the ERDAS APOLLO Server
Administrator's Guide for more details on provider modes.

• Click the Finish button.

Adding Coverage Resources

This section explains how to add remote OpenGIS/ISO Web Coverage
Servers and their associated Coverage Portrayal Services to the
project.

A Coverage Portrayal Service is a special kind of WMS that
understands SLD stylesheets containing raster coverage rendering
operations.

224 The ERDAS APOLLO Style Editor

Procedure Adding Coverage Resources

1. Choose Data/Add Coverage Source... from the Data menu.

The coverage service doesn't currently support on-the-fly
coordinate transform. For example, to use the ATLANTA_SINGLE
coverage service, you will first need to change the coordinate
system to EPSG:2240, which is the SRS supported by
ATLANTA_SINGLE.

2. Enter the URL of a Web Coverage Service and click Add.

Figure 33: Coverage Source

3. Enter the URL of a Coverage Portrayal Service, click Add.

The ERDAS APOLLO Style Editor 225

Figure 34: Portrayal Service URL

4. Enter a unique Name and a Title for the coverage. The name must be
in lowercase and should preferably correspond with the WCS provider.

5. Select Finish.

Authenticated Connections

Some data services (WFS, WMS or WCS) may require authentication
in order to establish connection. The authentication is done through a
login and password which can be defined when adding the data source.

Procedure Establishing an Authenticated Connection

1. Follow the normal Add Data Source procedure for the specific type you
wish to add, as described from Adding Features Resources to
Adding Coverage Resources.

2. In the final step of the procedure, select Next (instead of Finish).

3. Enter the server's Login and Password.

226 The ERDAS APOLLO Style Editor

Figure 35: Secure Connection Window

4. With the Try remember check box, select if you want ERDAS APOLLO
Style Editor to memorize the login and password for future utilization,
even if the service URL is used as another type of data source.

5. Select Finish.

Adding Resources from a Context

ERDAS APOLLO Style Editor makes intensive use of OpenGIS/ISO
Web Map Contexts. Please read the Concepts Guide, chapter 3 to learn
more about contexts or consult the OGC website for the specification.

Importing a context means to add new data sources to your project from
a local XML file. To import a local context into ERDAS APOLLO Style
Editor, select the Import Context... from the File menu, choose a
OpenGIS context XML file you want to import, as shown by the
following.

http://www.opengeospatial.org/

The ERDAS APOLLO Style Editor 227

Figure 36: Import Context

Browsing a Data Source

The data source panel presents, in a tree structure, all the resources,
or data sources, that have been added to the project. Among the
resources, you'll find WMS, WFS, WCS, etc.

228 The ERDAS APOLLO Style Editor

Figure 37: Data Source Panel

To browse a specific data source, double-click the data source name or
click its expand icon. Each data source lists its containing elements.
The list of elements is specific to each data source. For instance, a WFS
will list feature types while a WMS will list layers.

More information on the data source as well as type specific actions can
be obtained in the contextual menu, by right-clicking in the data source
label.

Figure 38: Data Source Properties Item

The ERDAS APOLLO Style Editor 229

Figure 39: Data Source Properties Window

The Forgiving Checkbox

When trying to add to the preview panel a WFS style based on a non-
conforming geometry, if the actual geometry does not match the type
defined in the feature schema, an error will be output alerting you of this
situation. This is a sign of server misconfiguration that should be fixed
in order to maintain the server compliant with the WFS specification.

However, in some circumstances, in order to be able to use the
information despite that mismatch, you may want to allow the
introduction of non-conforming geometry layers in your project. To do
this, access the data source properties menu, by right-clicking it in the
Styles panel and selecting properties. If the data source type is a WFS,
you will see a checkbox named Forgiving. If activated, this property
makes ERDAS APOLLO Style Editor behave less restrictively and
accept the layer.

Removing Data Sources

The data sources you added to your project can be easily removed
directly from the Styles panel.

Procedure Removing a Data Source

1. In the Styles panel, right-click on the data source you wish to remove.

2. A contextual menu appears, select Remove Data Source.

230 The ERDAS APOLLO Style Editor

Figure 40: Remove Data Source Option

3. In the confirmation box, select Yes.

This action is irreversible. It will destroy all the styles created from
the selected source, even if they are currently being used.

Data Source's History List

Each time you add a valid web service URL it is stored in the data
source's history. This history is conveniently shown to you when trying
to add data sources, so you don't need to remember or retype the same
URL multiple times.

The data source's history is not shown necessarily in a chronological
order, since you can manipulate it in order to obtain the most benefit.
This includes the possibility of removing the stored URLs you don't want
to keep, as the possibility to change their order of appearance.

By selecting the displayed position of the URLs, you can organize them
by subject, by keeping the most used URLs on top of the history list, or
in any other way you'll find suitable for your needs.

Procedure Manipulating the Data Source's History List

1. Select Data from the top menu.

2. Select to add one of the following data types: Data, Map or Coverage.

Figure 41: Add Data Menu

3. Select the locality of the data source. (E.g: It can be a local resource or
a remote server).

The ERDAS APOLLO Style Editor 231

4. A list with the previous inserted resources will appear. Right-click in one
of the entries to obtain its contextual menu.

5. From the contextual menu, select the action you want to perform:

Figure 42: History List options

• Select Move Up to bring the data source's address up by one
position.

• Select Move Down to bring the data source's address down by one
position.

• Select Delete if you want the URL to disappear from the history list.

Layers

The Layers Panel

When rendering a map, the ERDAS APOLLO Style Editor will overlay
different layers to form a single image. The list of layers that the ERDAS
APOLLO Style Editor considers when composing its map are taken
from the layers panel.

232 The ERDAS APOLLO Style Editor

Figure 43: Layers Panel

Adding a Layer to the Map

To add a layer to the map, in the data source panel, right-click on one
of the sub-elements of a data source. Select the Add To Preview menu
entry. The selected layer will then appear in the layers panel and the
map will automatically be refreshed.

Figure 44: Add Layer

Renaming a Layer

The layers you add to the map are created, by default, with the same
name as its corresponding data source element, allowing you to quickly
start using the layer without further delay. ERDAS APOLLO Style Editor
gives you the possibility to rename the title of each individual layer, thus,
allowing you to choose the best suited name in the context of your own
project.

The ERDAS APOLLO Style Editor 233

Procedure Rename a layer

1. In the layer panel, right-click on the layer you wish to rename. Its
contextual menu will appear.

2. In the contextual menu, select Layer Properties.

Figure 45: Layer Properties

3. Replace the current name in the Title field with the new label title.

4. Select OK.

Removing a Layer from the Map

To remove a layer from the rendered map, right-click on a layer in the
layers panel and select the Remove Layer from Preview menu entry.
The map will refresh itself and the layer will be removed from the layers
panel.

Figure 46: Remove Layer

Hiding a Layer from the Map

To keep a layer in the Layers Panel but force it not to be rendered in the
map, right-click on the layer in the Layers Panel and select the Toggle
Layer Visibility menu entry. The layer will then be hidden from the map
and will appear as grayed in the layers panel.

234 The ERDAS APOLLO Style Editor

To make the layer visible again, repeat the above operation.

Ordering Layers

The order in which layers compose the map can be changed. To make
a layer appear above another layer, click the layer in the Layers Panel
and select the Up button. The map will automatically reload to reflect
this change. The Down button can also be used to place a layer below
another layer.

The Up and Down buttons are illustrated in the following figure:

Figure 47: Ordering Layers

The Max Count Option

This option allows you to limit the number of results obtained. This is
especially useful in situations where a too generic request retrieves a
data amount which is far greater than you anticipated, resulting in huge
transfer delays.

As example, imagine a server with detailed information on all of the
streets in the United States. You may need only a specific regional part
of this information, but if you start with the U.S. map on your screen,
before zooming in, a request demanding all the roads will be sent
blocking navigation. If a limit is set, only the specified amount will be
drawn allowing you to proceed with the navigation or perhaps analyze
the retrieved data in order to understand which data can be filtered out.

This option only applies to WFS servers. Other services, such as WMS
or WCS have their own specific filters.

Procedure Configuring the Max Count property

1. In the Style panel, right-click in a feature layer. Its contextual menu
will appear.

The ERDAS APOLLO Style Editor 235

2. Select the Layer Properties menu item.

Figure 48: Layer Properties Menu Item

3. In the Layer Properties window:

• Toggle the Max Count Checkbox to activate or deactivate it.

• Edit the Max Count Text Field to specify the retrieved feature limit.

Figure 49: Max Count in Layer Properties Window

4. Select OK.

Spatial Filtering

Spatial filtering is used to limit the retrieved information to the area
being currently displayed on your screen. This may be used both with
WFS and WMS servers.

236 The ERDAS APOLLO Style Editor

Procedure Configuring the Spatial Filter

1. In the Style panel, right-click in a feature or map layer. Its contextual
menu will appear.

2. Select the Layer Properties menu item.

3. In the Layer Properties window:

• If configuring a feature layer, toggle the Spatial Filtering
Checkbox.

• Else, if configuring a map layer, toggle the Use Box Checkbox.

Figure 50: Use Box in Layer Properties Window

4. Select OK.

Additional Parameters

Some servers accept proprietary parameters in their requests
(ServiceName, Quality, ...). Since this is not standard regulated, there
is no way to anticipate which parameters those servers use and its
functionality. Nevertheless, in order to provide our clients with the up
most interoperability, ERDAS APOLLO Style Editor allows you to
specify additional parameters to the server requests.

The ERDAS APOLLO Style Editor 237

Procedure Adding additional Parameters

1. In the Style panel, right-click in a map layer. Its contextual menu will
appear.

2. Select the Layer Properties item.

3. Select New in the Layer Properties window.

4. In the New Entry window, insert the server specific Key and Value.

Figure 51: Additional Parameter New Entry Window

5. Select OK.

Layer Statistics

The statistics option allows you to obtain detailed information on the
elements contained in WMS layer built over a WFS. This information
includes the number of retrieved geometries, the type of geometries...
This is a feature only available with erdas-apollo servers.

Procedure Activating Layer Statistics

1. In the Style panel, right-click in a map layer. Its contextual menu will
appear.

2. Select the Layer Properties item.

3. Toggle the Statistics checkbox to activate/deactivate this option.

4. Select OK.

238 The ERDAS APOLLO Style Editor

Figure 52: Layer Statistics with boston_shape

Map Navigation This section presents the ERDAS APOLLO Style Editor navigation tools
that allow you to change the current view of the map by zooming,
panning or quickly jumping to specific locations.

Zoom and Pan

This section describes the zoom and pan tools provided by the ERDAS
APOLLO Style Editor. Note that these tools remain selected until you
choose another one.

Zoom Tools

Three zooming tools are available through the use of two icons:

• The tool allows you to zoom in by either one point (a single click) or
two points (by drawing a box).

• The tool allows you to zoom out by one point (a single click).

The ERDAS APOLLO Style Editor 239

Pan Tools

Panning can be achieved by using the icon in the toolbar. This tool
allows you to recenter the view on a point indicated by a single click
onto the map.

Changing Scale

You can also use the Scale panel to change the current scale, which is
also a kind of zooming tool. The Scale Panel allows you to change the
scale using the slider or to enter a scale value in the text field.

Figure 53: Change Scale

Fit Envelope to Layer(s)

This is the quickest way to view an entire layer content. In the Layers
Panel, select the layer to extend to by right-clicking it and choosing Fit
View To Layer in the menu, as shown below:

Figure 54: Fit To Layer

240 The ERDAS APOLLO Style Editor

When executed on a single layer, the current map envelope is adapted
to the chosen layer envelope. If you choose several layers, then the
resulting envelope is the smallest envelope that surrounds every layer
envelopes.

Switching Map Extents

You can quickly navigate to a previous extent of the map, i.e. the area
you were previously on the map before navigating to some other area,
by using the icon in the toolbar.

Clicking the icon will take you back to a more recent map extent.

Envelope Manipulation

Using the Envelope Panel, you can view and change the coordinates of
the current view box of the map, as well as the Spatial Reference
System.

Figure 55: Envelope Panel

The Envelope Panel also offers additional features such as parsing of
bounding box, copy and paste of envelopes, etc. To start using these
features, click the icon and select the appropriate menu entry:

Figure 56: Envelope Menu

The ERDAS APOLLO Style Editor 241

Map Overview

ERDAS APOLLO Style Editor offers, as a collapsible panel, an
overview map, or index map. The overview area gives an indication of
where the current map view is situated within a broader context, e.g the
world.

The box of the active map will be represented on the overview map as
either a red cross or a yellow rectangle area, depending on whether the
box of the active map can be drawn meaningfully as a rectangle area
on the overview map.

Figure 57: Overview Panel

Miscellaneous Tools

This section presents the various ERDAS APOLLO Style Editor tools
related to map navigation.

Compute Distances and Areas

The Compute Distance and Area tool uses a Geometry Editor. This
Geometry Editor will let you draw polygons while displaying, in the
status bar, the distance and area of the currently drawn geometry. To
use the Geometry Editor, please click on the icon.

242 The ERDAS APOLLO Style Editor

Figure 58: The Geometry Editor

You can add points using the left mouse button and remove a point with
right-click.

Simply use any other tool to quit the Geometry Editor.

View Feature Properties

Using the icon, you can obtain information about features that are
located in a given box. The kind of information you will obtain is
dependent on the type of the feature. To use this function, click the
above icon then drag a rectangle on the map. A window, like the one
below, will appear:

The ERDAS APOLLO Style Editor 243

Figure 59: Feature Info

All properties of the selected feature are listed in the two-columns table.
Note that, in the example above, the selected feature is of type
protectedareas with ID protectedareas.27.

The drop-down list contains all the features that were found in the
selected box. To view the properties of another feature, simply select it
from the drop-down list or click the left and right arrows to navigate in
the list of features, as shown below.

Figure 60: List of Features

244 The ERDAS APOLLO Style Editor

Gazetteer

You can now use ERDAS public gazetteer service to quickly navigate
to well known places. Use the Tools/Gazetteer menu entry to view the
Gazetteer panel, as shown below:

Figure 61: Gazetteer

Enter your search criteria (% wildcard allowed) into the Search text field
then click on Search. All the results are presented in the table, you can
click on each column header to sort the rows. Choose a location then
click on Pan To to center the map on this location. Press the Close
button to exit.

Views The ERDAS APOLLO Style Editor uses the concept of views to display
maps. A view is an interactive map that lets you display, explore, query,
analyze and style geographic data in the ERDAS APOLLO Style Editor.
Views are saved in the ERDAS APOLLO Style Editor project you are
currently working with.

The ERDAS APOLLO Style Editor 245

A view defines the geographic data that will be used and how it will be
displayed, but it does not contain the geographic data sources or map
servers themselves. Instead, a view references these data sources.
This means that a view is dynamic, because it reflects the current status
of the data source. If the data source changes, a view that uses this
data will automatically reflect the change the next time the view is
drawn. This also means that the same data can be displayed on more
than one view. Another powerful functionality of the ERDAS APOLLO
Style Editor is that it allows you to share styles between different views.
Each style created in the scope of a project can be used to render data
in any view of that project!

With this new feature, in no time you'll be working with your data in a
completely new way. You will be able to easily compare maps without
having different instances of the ERDAS APOLLO Style Editor open,
you will be able to preview your maps at different scales, and see how
your maps look like on a specific device. Additionally, you will be able
to export your view as an OpenGIS Context!

Figure 62: Views

Creating a View

A default view, called View 1 will be created when you initiate a new
project.

If you want to create a new view in your project, you can do it in two
ways:

246 The ERDAS APOLLO Style Editor

Procedure Create a New View

1. In the View Menu, select Create New a new view (2, 3, 4,... depending
on the number of views you have already created) will be displayed.

Figure 63: Create a New View - Method 1

2. Or you can right click on a existing view and hit New

Figure 64: Create a New View - Method 2

View Properties

Since a view can be exported as an OpenGIS Context, the ERDAS
APOLLO Style Editor offers you the possibility to set some OpenGIS
Context attributes such as the Context Title, Abstract and Keywords.

The ERDAS APOLLO Style Editor 247

Figure 65: View Properties

Configuring a View

Enabling Map Dressing

Map dressing is the option to add a legend, a scale bar, or a grid to the
map. You can enable or disable Map Dressing by selecting or un-
selecting the Map Dressing entry in the View Menu.

Figure 66: Enabling Map Dressing

See below for a map with map dressing enabled.

Figure 67: View with Map Dressing Enabled

If map dressing hasn't been configured before being enabled, you
will not see any result from the Map Dressing menu command.
Map dressing configuration will allow you to select what kinds of
dressing elements you want to add to your map, such as a legend,
a grid, a scale bar, etc.

248 The ERDAS APOLLO Style Editor

To configure map dressing, right-click on the data source to
configure in the data source panel and select the Edit Dressing
Style... menu entry.

Show Transparent Areas

To display the transparent areas, you need to hit the Show
Transparent Areas entry in the View Menu

Figure 68: View with Transparent Areas

Configuring a Device

The view menu contains an option referred to as Device Screen. You
can use this option to display a sub-menu with pre-defined devices.

By "Device" we mean a real live tool in which we can display maps
such as a 3G mobile phone or a palm. The ERDAS APOLLO Style
Editor can help you to design maps for these devices with the right
settings (color depth, size), so that you can preview them as they
will be displayed on the device.

The ERDAS APOLLO Style Editor 249

Figure 69: Select a Device

The last item of the Device Screen sub-menu is the Manage option.
You can use this option to reference the list of pre-defined devices, or
to add, remove or define new specific devices from the Device Screen
sub-menu.

To add a new device you will need to right click in the Device Screen
window and then hit the New option.

Figure 70: New Device

This screen will allow you to re-order the list of devices using the Move
Down Move Up items. You can also easily delete a device or edit the
device's properties by double clicking on the device name or using the
Properties option in the pop-up menu.

250 The ERDAS APOLLO Style Editor

Figure 71: Configure Device

Saving a View as a Context

The current view can be saved as an OpenGIS context. Saving the
context means to serialize the current view and its associated data
sources to an XML file on your hard disk. To save the current view as a
context, select the Export Context... from the File menu.

Figure 72: Export Context

You will then need to locally save the context XML file using the
standard Save As... dialog. The XML context file can be later re-used
by importing it into ERDAS APOLLO Style Editor.

When exporting a context, if some of the data are local shapefiles,
a messages warns that those layers will not be exported and
proposes to proceed with the export or to abort it.

The ERDAS APOLLO Style Editor 251

Styling Data

Brief Introduction to
Styling

What is Styling

Styling is the process of creating stylesheets, which are sets of
parameters to be applied when portraying a particular feature type.
Please refer to Portrayal Capabilities for a thorough discussion of the
portrayal service.

Styles and Rules

Each style produced by the ERDAS APOLLO Style Editor is based on
a particular portrayal rule.

Portrayal rules and styles are two separate concepts. You need both
rules and styles to portray data, but each entity provides a different level
of service. Rules are pieces of program code providing a certain way for
portraying data such as classification upon numeric value. Styles are
text files that contain parameters defining how to portray a dedicated
set of data. For example, a style will define which field the portrayal
engine should classify upon and what fill color and stroke width are to
be used.

The ERDAS APOLLO Style Editor Styling Architecture

One of the important benefits of using the ERDAS APOLLO Style Editor
tool to prepare styles is the possibility to visualize their effect while
fiddling with parameters, before server-side publication. To accomplish
this, the tool embeds the following components:

• A "client" version of ERDAS's versatile portrayal engine, with
support for plug-in styling rules.

• The same bundle of styling rules that is available on the server side,
with additional configuration/user interface descriptors.

The rules are used in three distinct ways by the ERDAS APOLLO Style
Editor tool:

• To create and present you with an user-friendly user interface that
allows intuitive parameter editing/selection.

• To generate preview renderings of the style against sample feature
sets extracted from your real-world data.

252 The ERDAS APOLLO Style Editor

• To create style packages that will later be published on the server
side. The published styles will then be available via the WMS
interface of the service.

Figure 73: The ERDAS APOLLO Style Editor Architecture

The above picture shows how the rule bundle is always available on
both the client and server side, while the style packages produced by
the ERDAS APOLLO Style Editor tool are published on the server.

Managing Styles

Creating Styles

You can create a new style by executing the Style Wizard, which is
accessible by selecting Create Style... from the contextual menu of any
feature type:

The ERDAS APOLLO Style Editor 253

Figure 74: Create Style Menu

The Style Wizard guides you through the following steps:

1. Right-click the source you want to use to obtain its contextual menu.

2. Select the option Create Style.

3. Select the geometry type you want to use.

Figure 75: Geometry Property Selection

This step will only appear for sources with more than one geometry
type defined.

4. Choose if you prefer to create new style or use one of the predefined
styles, then click Next.

5. Select the styling rule your style will be based on from the drop-down
menu (a small description of the rule behavior will appear under the
drop-down control when available), then click Next.

254 The ERDAS APOLLO Style Editor

Figure 76: Styling Rule Selection

6. Enter the name that will be used to reference the style once it is
deployed on the server, then click Finish or Properties... to create the
style and insert it in the database.
Since style names have to conform to the WMS naming conventions,
the Finish and Properties... are enabled only when the name is valid.
While the name is invalid, a descriptive tip explaining the cause should
appear under the control.
The Properties... button performs the same action as Finish, and then
invokes the inspector for you to edit the style parameters.

Figure 77: Name Selection and Validation

The ERDAS APOLLO Style Editor 255

Deleting Styles

You can delete an existing style by selecting Delete from the contextual
menu of the style.

If you confirm the deletion, the style is removed from the database and
every preview layer that depends on it is also deleted.

Modifying Styles

You can launch the style editing dialog by double-clicking on the layer
in the preview panel or by highlighting the layer in the panel, right-
clicking, and selecting the properties item from the pull-down menu.

The style editing dialog is composed of the following parts:

Figure 78: Style Editing Dialog

• the central part of the dialog embeds an inspector for the
currently selected styling rule. You will find the description of these
inspectors in Rules Reference Guide.

256 The ERDAS APOLLO Style Editor

• selects the rule the current style is based on. If you select
another rule, the ERDAS APOLLO Style Editor tool will try to
migrate your current style settings to the new rule (when
applicable).

• the action area contains the various style application
commands which are detailed below.

The following commands are available in the action area:

• OK: Applies the current settings to the style, commit them to the
style database, and closes the editing dialog.

• Apply: Temporarily applies the current settings to the underlying
style, and causes the views that depend on it to refresh themselves.
The Apply button does not close the dialog, and can be clicked
more than once.

• Cancel: Undoes any temporary changes made to the underlying
style and then closes the editing dialog.

Rules Summarized

The styling rules provided with the ERDAS APOLLO Style Editor are:

• Uniform - Uniformly applies a simple style to every feature. The
stroke, fill and symbol to use can be configured for the whole feature
collection, and a property of the feature can be used for labeling.

• Discrete Classification - This style rule should be used for
displaying categorical data (data values such that the symbol for
one value is no more or less prominent than the symbols for any
other value). It also handles lines' and polygons' stroke and fill color
variations as well as line/outline width.

• Range Classification - This style is used to classify raw data (such
as population counts), ranked data (to show a progression of values
such as best to worst scholastic scores in a given region) or to
represent percentages (such as percentage of given area that are
affected by pollution).

• Known Symbol - Applies a fast-to-render marker (from a fixed,
predefined set) at the centroid of each feature. A property of the
feature can be used for labeling.

The ERDAS APOLLO Style Editor 257

• HTML Report Fragment - This Style Type allows you to render a
feature collection into a HTML fragment. You may set a sub-title that
will appear in the output for this feature type. Please refer to Chapter
10 for the HTML Report layout construction.

• Uniform Roads - This is a style type dedicated to the display and
portrayal of various types of roads. It allows you to configure an
outline, fill color, and center line to line or polyline geometry; it can
also label the road with a property of the feature.

• Discrete Road Classification - This style type is used to render
roads with a discrete classification that affects outline and center
line colors.

• Range Road Classification - This style type is used to render
roads with a range classification that affects outline and center line
colors.

• Variable Markers - This styling rule marks features with scaled and
(optionally) rotated symbols. The size and orientation are
determined from one of the properties of the feature.

• Patterner - This styling rule fills polygons with patterned
backgrounds.

• Numberer - This styling rule marks the features that are the nearest
from the map center with sequential numbers.

• Symbol Roller - This styling rule renders linear geometries by
stamping a list of symbols along the curve in a cyclic manner.

Styling Various Types of Geometries

Styling is specific to geometry contained by the selected layer.

Table 13: Graphic Options According to Geometries

Points You can select the specific marker desired and set
display properties, such as color, size and labels.

Lines You can set a color, width, and dash type for lines
as well as determine linear capping and join
parameters.

Polygons You have the same styling options as available for
Lines, as well as the ability to add a fill color.

258 The ERDAS APOLLO Style Editor

Deploying Styles

The easiest (and recommended) way to deploy styles is to package
them in a GAR archive which will be subsequently dropped in the
rendering directory of the portrayal service. Please refer to the
Administrator's Guide for more information about the rendering
directory organization.

If you are saving your styling project in a GAR package (which is the
default format in this version of the ERDAS APOLLO Style Editor tool),
no additional steps are necessary: you can just drop your project file as-
is in the rendering directory.

If you are using an old-style .styler archive, you can generate a GAR
archive using the File/Styles/Create Bundle... command. This
command generates the same metadata-augmented archive format
than Save As... , but does not change the filename and package format
of the current project.

Scale Range
Management

What is Scaling

Scaling is an important notion in GIS. When manipulating data, one
needs to be able to determine and decide at which scale to do rendering
and to display layers. It is now possible to easily deal with scaling in the
ERDAS APOLLO Style Editor. A new scale panel can help you to
specify which layer should be displayed at any particular scale.

Figure 79: Scale View

The ERDAS APOLLO Style Editor 259

Details of the Scale Panel

The scale panel contains the list of the layers selected in a particular
view. The scale panel can be activated by dragging the icon located in
the bottom left corner just below the map. The map can be viewed at
different scales by moving the red scale cursor to different points along
the scale line.

Changing the scale line maximum and minimum values, will result in a
different mix of the features being displayed, depending on which
feature's range bars are dissected by the scale cursor. This change can
be done by three different ways. You can either:

1. Double click on the scale bar, directly accessing the Edit Scale Range
Window.

2. Right-click in the scale bar, and select Properties in the contextual
menu.

3. Drag one of the extremities of the bar with the mouse pointer.

Figure 80: Edit Scale Range Window

Feature types not toggled in the layer visibility will be highlighted in dark
green on the Feature Type list and will not be affected by the scale line
placement.

Changing the scale by moving the red scale cursor to different points
will automatically update the view's scale box and of course the current
bounding box.

260 The ERDAS APOLLO Style Editor

Figure 81: Changing the Scale

In order to configure a WMS server with the scale configuration you
designed, you have to export your project as a context, and based
on it, build a ContextProvider. More details on how to export a
context in Saving a View as a Context.

When the WMS server you access publishes a "Scale Hint"
information for a layer, this hint is converted to the Scale Range for
this layer in the ERDAS APOLLO Style Editor. Further changes in
the Scale Range panel will override the Scale Hint.

Rules Reference
Guide

“Uniform" Rule The "Uniform" styling rule is valid for simply applying the same default
style (colors and symbols) to all of the features types in the layer. This
is useful for simply demonstrating where the features of the layer are
located.

Whether you want to portray points, lines or polygons, this basic rule will
enable you to control the various parameters relevant to the chosen
geometry.

The ERDAS APOLLO Style Editor 261

Figure 82: Point Style Example

Styling Points

The "Uniform" styling rule, like the other rules provided within the
ERDAS APOLLO Style Editor, is customizable through a popup window
composed of a set of panels. Parameters are organized by panels
according to their geometry. There are three panels available for styling
point layers.

• The Graphic Panel: This panel (for points) allows you to select the
antialiasing option.

• The Marker panel: This panel allows you to select options about the
desired marker image, its size and color.

• The Label panel: This panel allows you to control your label options.

262 The ERDAS APOLLO Style Editor

The Graphic Panel

Figure 83: Uniform - Graphics Panel (Point Mode)

• Antialiasing - Antialiasing is a computer graphics technique used
for smoothing jagged edges in text characters and line segments.
Enabling it may dramatically improve readability, but may affect the
ERDAS APOLLO Style Editor's performance.

The following anti-aliasing options are available to you from the drop-
down menu:

Please read the "Common" chapter for more information about the
antialiasing process within the ERDAS APOLLO Style Editor.

Table 14: Antialiasing Options

None Antialiasing is not applied at all, resulting in faster
performance but jagged edges for text characters
and line segments.

Shapes Only Antialiasing is applied only to line segments. Text at
small sizes may appear jagged.

Text Only Antialiasing is applied to text only, but line
segments are not smoothed.

Full This is the default value for this option. Antialiasing
is applied to both text and line segments. This is the
smoother and the slower rendering mode.

The ERDAS APOLLO Style Editor 263

The Marker Panel

The Marker Panel allows you to pick the type of marker to portray your
point symbols. Additionally, you may customize additional parameters
to modify the marker's appearance such as the marker size, labeling
properties, symbol type, color and fill.

This option is only present with the point geometry type.

Figure 84: Uniform - Marker Panel

• Size - Two values, expressed in pixels, define the width and height
of the marker.

• Only On Labels - This option defines whether the marker will be
rendered for each instance of a point feature or for each attached
label. When markers are tied to the label, they are rendered after
the clash management process. This renders an easier-to-read
map with properly placed labels.

264 The ERDAS APOLLO Style Editor

Read more information about Clash Management in the Common
Elements.

• Symbol - This option lets you choose a symbol in the drop down list
of standard symbols or by selecting an SVG, PNG, GIF or TrueType
font file on your local computer or mounted network disks. The
chosen symbol will be resized according to the size expressed in
the "size" option.

While browsing the existing symbols, you have the possibility to add
your own symbols and remove the existing ones. This is achieved
through the contextual menu obtained by right-clicking a symbol.

Table 15: Uniform - Only On Labels options

Selected Render a marker for each label generated. This
takes place after the Clash Management process,
meaning some labels and symbols may have been
removed for ease of map viewing.

Unselected One marker will be rendered for each geometry,
regardless of the Clash Management process

The ERDAS APOLLO Style Editor 265

Figure 85: Uniform - Select Symbol Window

There are two kinds of symbols. Some symbols enclose the outline and
fill color, while others can be customized using the "Inherits" section of
this panel.

• Inherit Section - This section is used to define the outline and fill
colors for an "Inherited Style" SVG symbol.

• When correctly encoded to allow inheritance, a SVG symbol can be
modified by the ERDAS APOLLO Style Editor. This means you will
be able to change its color properties for both the outline & fill of the
symbol.

Table 16: Symbols

Blue Circle, Blue
Square, Green Circle,
Green Square, Red
Circle, Red Square

Draws the symbol selected from the default symbol
menu.

Inherited Style Circle or
Square

Renders a Circle (or Square) whose colors are
defined in the "Inherits" section of the Marker panel.

266 The ERDAS APOLLO Style Editor

- Stroke Paint - Defines the outline color for the selected
"Inherited Style" symbol. Colors can be chosen from the drop
down color list or using the color palette by clicking the "..."
button. The stroke color can be set to none by un-checking the
box to the left of the colors drop down list.

- Fill Paint - Defines the fill color for the selected "Inherited Style"
symbol. Color can be chosen from the drop down color list or
using the color palette by clicking the "..." button. The fill color
can be set to none by un-checking the box to the left of the
colors drop down list.

When the chosen symbol is a TrueType font (generally a .ttf file), an
additional panel appears to let you choose the symbol (glyph) from the
list.

The ERDAS APOLLO Style Editor 267

The Label Panel

Figure 86: Uniform - Label Panel

• Property - This drop down lists all properties exposed by the data
source (either WFS or local shapefile) and allows you pick the one
you want to use as the labeling property.

• Font - Allows you to choose the font to be used for text labels
through a standard font chooser.

268 The ERDAS APOLLO Style Editor

The fonts available in the font chooser are the ones installed on
your local computer. Ensure the font you've chosen is available on
your remote server. If the selected font is not available on the
remote server, font substitution will take place and the produced
map may be slightly different from the preview in the ERDAS
APOLLO Style Editor.

• Color - Defines the text color for the label. A color can be chosen
from the drop down color list or using the color palette by clicking
the "..." button.

• Halo - You also have the option to add a "Halo" to your labels. The
Halo parameter is essentially a background color for your labels. It
can be used to draw attention to the labels that you have created.
You can pick a desired color and width in pixels for the halo of your
text labels. This functionality is useful if you want to be sure your text
can be read when used in every kind of map, regardless of the color
used in the other layers. For example, you may want to set a black
text and a white surrounding halo. In this way your text can be read
regardless of the underlying layer colors.

- Width - Sets the width of the halo in pixels. You can deactivate
the halo by unselecting the check box in front of the size entry
box.

- Color - Defines the halo color for the label. A color can be
chosen from the drop down color list or using the color palette
by clicking the "..." button.

• Management - You may choose to align your feature labels in the
same location with respect to the feature being labeled. Choosing
the alignment management option allows you to pick the location in
which the label should be located in terms of the point feature.

- Alignment - Allows you to select where to render the label
relative to the point (or geometry). There are nine values for
label alignment:

Table 17: Alignment options

Top Left Top Top Right

Left Center Right

Bottom Left Bottom Bottom Right

The ERDAS APOLLO Style Editor 269

- Anti Clashing - You can choose to avoid label text that "runs-
into" other label text on your display. The Anti-Clashing option
activates Clash Management whose goal is to avoid label
overlapping at rendering time.

Read more information about Clash Management in the "Common"
chapter.

- Max. Count - This option sets the maximum number of labels to
be kept after Clash Management. For example, if you have a
layer with 1000 points, you may ask the Clash Management to:

1. Remove any overlapping labels.

2. Only keep a maximum number or a given number of labels (100, for
example) to insure map readability.

• Target Layer - Here you can specify whether you want the labels to
be drawn on the current layer or to be drawn on the Map Dressing
layer.

Styling Lines

When you have linear data, you can access appropriate styling rules by
double-clicking on the line layer in the preview panel or by highlighting
the layer in the panel, right-clicking, and selecting the properties item
from the pull-down menu.

When styling lines, the "Uniform" styling rule offers the ability to define
how to render and label the line.

These options are grouped in two panels:

• The Graphic panel: Like the point Graphics panel, you may
configure the options for styling linear geometry in terms of color,
line types, end points and joining.

Table 18: Target Layer options

This The labels are drawn on the current layer.

Dressing The labels are drawn on the Map Dressing layer.
Using this method, the labels will be on the upper
most layer for this provider. This ensures better
readability of the produced map.

270 The ERDAS APOLLO Style Editor

• The Label panel: This panel defines your labeling options. It is the
same panel as for point geometries. Please refer to The Label
Panel for more information.

The Graphic Panel

Figure 87: Uniform - Graphic Panel (Line Mode)

• Antialiasing - Activates the antialiasing option. Please refer to the
Labeled Basic Style Graphic Panel explanation for points geometry
for more information.

• Stroke - This set of options defines how the line geometry will be
portrayed with options such as stroke width and stroke color.

- Paint - Selects a paint color for the line geometry.

• This color can be picked from the drop down color list or
using the popup color palette by clicking on the "..." button.

• The Paint option can be deactivated by unchecking the box
next to the color drop down option.

The ERDAS APOLLO Style Editor 271

- Width - Defines the line's width.

• This value is expressed in the unit chosen from the drop
down unit selector. See the table below for units explanation

Please refer to the SVG units definition for more information.

- Cap -The ERDAS APOLLO Style Editor allows you choose the
type of end caps for your linear features. End caps specify the
shape of the endpoints of an open path.

- Join - This parameter sets how you want your lines to be joined
together:

Table 19: Stroke Width Units

SRS Units The width value is a number of units in the result
image SRS. These units may be degrees, meters,
inches or any other linear measure depending on
the SRS used. This way width is strongly tied to the
image scale.

Pixels The value will be expressed in pixels in the
resulting image, regardless of its scale.

Meters The width value will be converted into meters in the
resulting image SRS. This is somewhat the same
behavior as the SRS Units option.

Percents The value is expressed in percents of the result
envelope.

Table 20: End Cap Parameters

Butt Ends unclosed subpaths and dash segments with
no added decoration. By default, end caps use this
setting.

Round Ends unclosed subpaths and dash segments with a
round decoration that has a radius equal to half of
the width of the line stroke.

Square Ends unclosed subpaths and dash segments with a
square projection that extends beyond the end of
the segment to a distance equal to half of the line
width stroke.

http://www.w3.org/TR/SVG/coords.html#Units

272 The ERDAS APOLLO Style Editor

- Dashing - There are several different dash patterns available to
you:

Styling Polygons

Styling polygons or polylines is basically the same as styling lines
except you may define a fill color for the geometry's area.

As for line geometries, there are two sets of options:

• The Graphic panel: This panel is the same as for styling a default
line except now you have the ability to define a fill color.

• The Label panel: This panel defines your labeling options.

Table 21: Join Parameters

Bevel Joins path segments by connecting the outer
corners of their wide outlines with a straight
segment. A beveled join will display corners as
squared-off path segment corners, so that the joint
appears flat rather than rounded or pointed.

Miter Joins path segments by extending their outside
edges until they meet. This is the default option.
Miter joins path segments with sharp corners that
extend to a single point.

Round Joins path segments by rounding off the corner at a
radius of half the line width.

Table 22: Dashing Patterns

Continuous _______

Dotted

Dashed ------

Dash Dot -.-.-.-.-.-.

Dash Dot
Dot

-..-..-..-..-..

The ERDAS APOLLO Style Editor 273

The Graphic Panel

Figure 88: Uniform - Graphic Panel (Polygon Mode)

• Antialiasing - Activates the antialiasing option. Please refer to the
Labeled Basic Style Graphic Panel explanation for points geometry
for more information.

• Stroke - This set of options defines how the polyline or polygon
outline geometry will be portrayed with options such as outline size
or width.

• Fill - This panel section only contains one option: the paint color to
use for filling the area of a polygon.

- You can choose a color by accessing the drop down color list or
by using the color palette by clicking the "..." button.

274 The ERDAS APOLLO Style Editor

The Label Panel

You will find the majority of the options here present to be common with
those of point geometries. This section will focus only on the polygon
specific options. Please refer to The Label Panel for more information.

Labels within a polygon will always be sized to fit within the polygon. If
you zoom out and the polygon is very small, the label will not display.

Figure 89: Uniform - Label Panel

• Label distribution - You can label multi-polygons in three ways: all
polygons of the collection, the first one or the biggest one. The style
panel gives you the choice, as a drop down list.

The ERDAS APOLLO Style Editor 275

Sample Styles

Here is a sample map, composed of three layers and produced by the
ERDAS APOLLO Style Editor using Labeled Basic Styles rule:

Figure 90: Uniform - Sample Styles

Classifications Classifying data is the process of grouping your data together into
classes that have similar values. One classifies data in order to make
the different data in your map easier to understand and manage. You
can also classify your data to discover and expose spatial patterns in
your geodata that are not obvious.

The ERDAS APOLLO Style Editor includes two different methods to
expose your data. The type of classification that you choose should
depend on the type of data you intend to classify.

• Discrete Classification - If your data are categorical, such as
unique names for landuse parcels, or types of roads, you should
choose the discrete classification type.

Table 23: Uniform - Sample Styles

Placename Layer Is composed of 3 features with points geometry.
They are displayed in green with a fill color. No
labels have been drawn for these points.

Rivers Are composed of lines and are rendered in blue
with a 1 pixel width

Land Use Is composed of polygons rendered in yellow with a
red outline of 1 pixel width.

276 The ERDAS APOLLO Style Editor

• Range Classification - If your data are raw (such as population
counts), ranked to show a progression of values (such as best to
worst scholastic scores in a given region) or represents
percentages (such as percentage of given area that are affected by
pollution), you should use the range classification type.

You can apply classification on any valid data type: points, lines or
polygons. Simply invoke the properties of the layer you wish to classify
by right-clicking on the layer or double-click the layer itself.

To help you create styles for each value or range of values of your
classification, we include a tool called the Populator in the ERDAS
APOLLO Style Editor. This tool will create a collection of styles by
allowing you to modify their parameters according to a specified color
palette or color gradient. You can also edit or create additional styles
manually to append additional values to your classification or even
create a brand new classification.

Discrete Classification

After you invoke the styling properties of a layer, pick the Discrete
Classification option.

The Discrete Classification style presents three panels:

• The General panel: This panel provides a set of options to configure
a display for values for your specified classes. This panel offers the
same options as the "Uniform" styling rule's Graphic panel. It will
change according to the geometry you wish to render. Please refer
to “Uniform" Rule for more information about the options in the
panel.

• The Classification panel: This panel allows you to build your
classification's classes.

• The Label panel: This panel defines your labeling options. It is the
same panel as the one for point geometries. Please refer to The
Label Panel for more information.

The ERDAS APOLLO Style Editor 277

The Classification Panel

Figure 91: Discrete Classification - Classification Panel

• Property - In order to classify your data, you must choose a field
from your geographic data that contains valid information for
classification. If your layer references a valid table or object
database, you may click on the pull-down menu on the Property
box. The pull-down menu will expose the fields in your table or
object database that are valid for creating classifications for the
selected layer's features.

• Type - Defines the type of data you build your classification upon.

278 The ERDAS APOLLO Style Editor

• Styles - In this section, you will define all your classification's
classes either manually or by using the Classes Populator.

• This table lists the already defined classes by their key value. There
is an overview of the style associated with each class.

- Key: This is the value to which the selected feature's property
should be rendered as defined in the associated style.

- Style: This area will display an icon previewing the associated
style (mainly line and fill color).

Please read section Creating Classes Manually for information on
how to create and edit classes manually or the section Creating
Classes with the Classes Populator to create classes with the
Classes Populator.

• Opacity - Displays a pop-up window to control the opacity level for
the entire layer. Opacity ranges from 0 to 255 and is set once for the
layer. You can also define an opacity level for one class by setting
the "opacity" property of its associated style fill color.

Table 24: Discrete Classification - Data Types

Literal Matching is done on a character-by-character basis
between the key and the string value of the data
field. This is the default matching type and
corresponds to the most common usage.

Integer Matching is done on an integer basis. This may be
useful when the classification keys are logically
integers, but the feature data field has a real
number type (values are rounded to the nearest
integer before matching).

Real Number Matching is done on a real number basis, with a
limited precision of 1/1000th. This ensures that the
right classification styles will be chosen when using
real number data, including between different
computer architectures (values are rounded a bit
before matching).

The ERDAS APOLLO Style Editor 279

Figure 92: Discrete Classification - Opacity

• Populate - Start the Classes Populator. Please read Creating
Classes with the Classes Populator to learn how to use this tool.

Creating Classes Manually

Classes can be created manually. You must first create a new entry in
the classes table, assign it a value and define a style for it based on the
Labeled Basic Style type.

To create a new class:

Figure 93: Discrete Classification - Styles Table

1. Right-click on any class and select "Insert". A new line is added to the
Styles Table.

2. Enter a key value for your class. Right-click on this class and select
"edit". The Edit pop-up window will appear.

3. Set the style options to reflect the display you want and then click on the
"Close" button to close the window and save your changes. Click on the
"Next" button to edit the following class (according to the Styles Table
order).

280 The ERDAS APOLLO Style Editor

Let's walk through the "Edit" window options to define a style for a
specific class:

Figure 94: Discrete Classification - Styles Table

• Title - The title field allows you to define a title for your classification.
This title will be used when displaying a legend for your
classification. If no values are entered here, the legend will be
generated with the key value as a title for the class.

• Graphic - This section's parameters define the display of the
feature classification. The options are the same as for the Graphic
panel of the Labeled Basic Style rule.

- This window offers the same options as the "Uniform" rule's
Graphic panel, according to the geometry you wish to render.
Please refer to “Uniform" Rule for more information about the
options in this panel.

• Next button - Saves your modifications and displays the styles
parameters for the next class according to the order of the layers.

• Close button - Saves your modifications and closes the window.

The ERDAS APOLLO Style Editor 281

Creating Classes with the Classes Populator

The Classes Populator is a convenient tool that allows you to easily
populate classifications of your data. It provides an easy way to build
classifications based on a color palette, color gradient, or a two color
interpolation. The tool also lets you specify a fixed number of values (or
value ranges when used from a Range Classification).

Creating classes with the Populator can be achieved this way:

1. Create a new Discrete Classification rule. Open the style properties and
select the "Classification" panel.

2. Select a feature property to classify upon.

3. Select a type for the feature's property.

4. Click on the "Populate" button. This will invoke the Populator window.

5. Set the graphic parameters for the style of the generated classes.

6. Click OK for the classes to be generated and added to the Styles Table.

Figure 95: Classes Populator - General Panel

• Max. Value Count - This option defines the maximum number of
different values to be kept when generating classes.

282 The ERDAS APOLLO Style Editor

- When used with a Discrete Classification, the n -being the
maximum number of values- first values coming from the
features are kept whilst all other values are displayed using the
default style as defined in the General panel of the Discrete
Classification.

• Graphic Sources - These are the same options as for the Graphic
panel of the Labeled Basic Style, depending on the geometry.
Please refer to “Uniform" Rule for more information on these
options.

Figure 96: Classes Populator - Advanced Panel

• Max. Feature Count - Defines the maximum number of features to
be retrieved from the data source, either local or remote, to build the
classes. The check box in front of the input field allows you to de-
activate this feature.

- Reducing the maximum number of features to be retrieved may
significantly improve classes building time if the data source
holds a large amount of features.

When used, the classes values are computed over the reduced set
of data fetched. This means some values may not be taken into
account when viewing the complete data set.

• Clear Existing Styles - This option determines whether the existing
classes should be erased when generating new classifications.

The ERDAS APOLLO Style Editor 283

- If you want to create a brand new set of classification classes,
choose "True". If you want the newly generated classes to be
appended to the existing ones, choose "False".

• Key Sorting - This section handles the generated classes order.
This is important if you style your classification with the color
gradient or color palette and you want the colors to reflect a data
value.

- Ordering - Even when doing a discrete classification, it is better
to have values ordered in a logical way. Note that this setting
has no effect on rendering, but may ease the editing of
generated classes lists.

- Reversed - When an ordering has been set on classification
keys, you may reverse the resulting list.

Range Classification

After you invoke the styling properties of a layer and pick the Range
Classification option, the Range Classification Rule presents three
panels:

• The General panel: This one is the same as for Discrete
Classification. Please refer to Discrete Classification for more
information.

• The Classification panel: This panel is the same as for the Discrete
Classification panel except for the lack of the feature's property type
selection. Range classification always assumes the property type is
numeric.

• The Label panel: This panel defines your labeling options. It is the
same panel as for point geometries. Please refer to The Label
Panel for more information.

Table 25: Class Populator - Key Ordering

None The classified values are not sorted. This is the
fastest option.

Natural The classified values are sorted lexicographically.
This is the default option.

Numeric The classified values are sorted in a pseudo-
numeric order.

284 The ERDAS APOLLO Style Editor

The Classification Panel

Figure 97: Range Classification - Classification Panel

• Property - Sets the feature's property upon which you build your
classification. The drop down list shows the complete list of
available properties for the selected layer's features.

Range classification can only be made upon numeric values. This
is why you cannot select a property type. The Discrete
Classification "Classification" panel allows this type of behavior.

• Styles - This table shows the same information and has the same
behavior as for Discrete Classification.

The ERDAS APOLLO Style Editor 285

The key values here are composed of two comma separated
numeric values to represent range.

Creating Classes Manually

Classes are created the exact same way as for discrete classification.
Please refer to Creating Classes Manually for Discrete Classification.

Creating Classes with the Classes Populator

The Classes Populator tool allows you to easily create all the classes of
a classification. However, the panels slightly change in terms of
handling numeric values as opposed to key values.

Creating classes with the Populator can be achieved this way:

1. Create a new Range Classification rule. Open the style's properties and
select the "Classification" panel.

2. Select a feature property to classify upon.

3. Select a type for the feature's property.

4. Click on the "Populate" button. This invokes the Populator pop-up
window.

5. Set the parameters for the generated classes style.

6. Click OK for the classes to be generated and added to the Styles Table.

286 The ERDAS APOLLO Style Editor

Figure 98: Classes Populator - General Panel

• Steps - This option defines the number of classes to be generated.

- You can query data from the data source, check the selected
property's range values and then split it in "n" sub ranges (n
being the number of requested steps).

• Graphic Sources - This panel provides a set of options to configure
a display for values for your specified classes. This panel offers the
same options as the Labeled Basic Style's Graphic panel. It will
change according to the geometry you wish to render. Please refer
the “Uniform" Rule for more information about the options in the
panel.

The ERDAS APOLLO Style Editor 287

Figure 99: Classes Populator - Advanced Panel

• Max. Feature Count - Defines the maximum number of features to
be retrieved from the data source, either local or remote, to build the
classes. The check box in front of the input field allows you to
deactivate this feature.

- Reducing the maximum number of features to be retrieved may
highly improve classes building time if the data source holds a
large amount of features.

When used, the classes values are computed over the reduced set
of data retrieved. This means some values may not be taken into
account when viewing the complete data set.

• Clear Existing Styles - This option tells whether or not the already
existing classes should be erased when generating new ones.

- If you want to create a brand new set of classification classes,
choose "True". If you want the newly generated classes to
append the existing ones, choose "False".

• Classification - Type - You can pick from three different
classification types: Linear, Logarithmic, and Quantile to compute
the bounds of the intervals. You will first choose the number of
classes you desire and the classification types. For example, you
have a population property for 20 regions in a country. The value
range is from 0 -20,000. You have chosen to display only five
classes or intervals.

288 The ERDAS APOLLO Style Editor

Table 26: Range Classification Types

Sample Styles

Figure 100: Classifications - Sample Result

Linear Linear classification will divide the value range into
five equivalent intervals. For the example, then, the
first class will display values from 0-4000 and the
second will display from 4000-8000. Each region
that has less than a population of 4000 will be
drawn using the geometry properties assigned to
the first classification interval.

Logarithmic Logarithmic classification will divide the value range
in five intervals using a logarithmic progression to
compute each interval range. Therefore, in the
example, the first class will be 0 to 10.89 and the
second will be 10.89 to 140.42. The interval sizes
actually grow in an exponential way.

Quantile In the quantile classification method, each class
contains the same number of features. Population
counts (as opposed to density or percentage), for
example, are usually not suitable for quantile
classification because only a few places are highly
populated. Quantiles are best suited for data that is
linearly distributed; in other words, data that does
not have disproportionate numbers of features with
similar values.

The ERDAS APOLLO Style Editor 289

“Uniform Roads" Rule This rule is meant for rendering data representing various types of
roads. Even if the parameters seem to be the same as for basic line
rendering, the rendering process has been updated to enable users to
portray roads and line segment junctions efficiently. The labeling
contained in this rule also allows road and river specific behaviors, such
as spline labeling.

This rule can be used with line geometry only.

The rule configuration is composed of three panels:

• The Graphic panel: As with the Lines Graphics panel, you may
configure the options for styling lines and center lines in terms of
color, line types, end points and joining.

• The Label panel: This panel defines your labeling options. It is the
same panel as for point geometries. Please refer to The Label
Panel for more information.

• The Symbol panel: Here, you can apply a symbol to the feature
being drawn, either from those already supplied with ERDAS
APOLLO Style Editor or by importing one of your own collection.

Table 27: Description of the Map

Protected Areas A ranged classification with a style variation on the
fill opacity (from 85 to 175).

Land Use A discrete classification upon land usage code
styled with a dedicated color palette.

290 The ERDAS APOLLO Style Editor

The Graphic Panel

Figure 101: Uniform Roads - Graphic Panel

• Antialiasing - Activates the antialiasing option. Please refer to The
Graphic Panel for more information.

• Outline - This group of options sets the road outline.

- Width - Defines a width value for the outline. The value can be
expressed in any of the units described in Table 19:Stroke
Width Units.

- Color - Defines the outline color. Outlining can be disabled by
unchecking the left control. A color can be picked from the drop-
down.

• Centerline

The ERDAS APOLLO Style Editor 291

- Width - Defines a width value for the centerline. The value can
be expressed in any of the units described in Table 19:Stroke
Width Units.

- Color - Defines the outline color. The drawing of centerlines can
be disabled by unchecking the left control. A color can be picked
from the drop-down.

The Label Panel

Figure 102: Uniform Roads - Label Panel

• Property - This drop down lists all properties exposed by the data
source (either from a WFS or local shapefile) and allows you pick
the one you want to use as the labeling property.

• Font - Allows you to choose the font to be used for text labels
through a standard font chooser.

292 The ERDAS APOLLO Style Editor

The fonts available in the font chooser are the one installed on your
local computer. Ensure the font you have chosen is available on
your remote server. If the selected font is not available on the
remote server, font substitution will take place and the produced
map may be slightly different from the preview in the ERDAS
APOLLO Style Editor.

• Color - Defines the text color for the label. A color can be chosen
from the drop down color list or by using the color palette by clicking
the "..." button.

• Placement - You may choose to align your feature labels in the
same location with respect to the feature being labeled. Choosing
the alignment management option allows you to pick the location in
which the label should be located in terms of the point feature.

Table 28: Placement Options

Horizontal The labels are written horizontally at the centroid of
the feature geometry.

On Curve (Stairs) The individual characters from the text are drawn
along the curve without being rotated, producing a
staircase effect.

On Curve The individual characters from the text are drawn
and rotated to follow the curve.

Over Curve The individual characters from the text are drawn
and rotated to follow the curve, but are offset to
"float" over the curve.

Under Curve The individual characters from the text are drawn
and rotated to follow the curve, but are offset to
"hang" under the curve.

The ERDAS APOLLO Style Editor 293

The Symbol Panel

Figure 103: Uniform Roads - Graphic Panel

• Symbol - Defines the symbol to be used. You can choose the
symbol in the Select Symbol window accessible via the Browse
button.

294 The ERDAS APOLLO Style Editor

Figure 104: Uniform Roads - Select Symbol

The contextual menu obtained by right-clicking the Select Symbol
window will allow you to add new items (SVG, PNG, GIF or TrueType
font) and remove the existing ones.

If you choose to add a new item, a browse window will open directly in
ERDAS APOLLO Style Editor's Symbols folder where you will find other
useful images (e.g. in Road_Signs you will find a shield to properly label
U.S. routes).

• Inherits - This group of options is specific to SVG symbols which
allow color override.

If the selected symbol is not an SVG, or if it's an SVG which doesn't
support this feature, this group will be not accessible and its options
will be displayed in light grey.

- Fill Paint - Define the interior color of the selected symbol.
- Stroke Paint - Defines the outline color of the selected symbol.

• Label

The ERDAS APOLLO Style Editor 295

- Label Property - This drop down lists all properties exposed by
the data source (either from a WFS or local shapefile) and
allows you pick the one you want to use as the labelling
property.

- Font - Allows you to choose the font to be used for text labels
through a standard font chooser.

- Color - Defines the text color for the label. A color can be
chosen from the drop down color list or by using the color palette
by clicking the "..." button.

• Geometry

- Size - Allows you to define the size of your symbol.

Sample Styles

Figure 105: Uniform Roads - Sample Styles

Known Symbol" Rule This rule is meant to display symbols quickly for selected features
rather than portray their feature geometry. For performance reasons, it
only allows the selection of the symbol from a fixed, predefined set of
fast-to-render markers rather than allowing the selection of an arbitrary
SVG, PNG or GIF file like the other rules do.

Table 29: Uniform Roads - Detail on the Sample Styles

Highways Displays a red centerline with a black outline.

Roads Displays a gray centerline with a black outline.

296 The ERDAS APOLLO Style Editor

This rule can be used with any kind of geometry. The configuration is
composed of three panels:

• The Graphic panel: Like the "Uniform" styling rule Graphics panel,
you may configure the options for styling feature geometry in terms
of color, size, and type.

• The Marker panel: You may configure the appearance of your
symbol in this panel in terms of size and rotation angle.

• The Label panel: This panel allows to you control your label options.
This panel is the same as for displaying point geometries. Please
refer to The Label Panel for more information.

The Graphic Panel

Figure 106: Known Symbol - Graphic Panel

• Antialiasing - Activates the antialiasing option. Please refer to The
Graphic Panel for more information.

• Stroke - Paint - This parameter defines the color to use when
displaying the symbol. This parameter may be deactivated by un-
checking the check box. Colors can be picked from the drop down
color schema list.

The ERDAS APOLLO Style Editor 297

• Fill - Paint - This parameter defines the stroke color use the render
the symbol. Fill may be deactivated by un-ticking the check box.
Color can be picked from the drop down color list.

The Symbol Panel

Figure 107: Known Symbol - Symbol Panel

• Known Name - This drop down list allows you choose one of the
below-listed symbol shapes:

• Size (pixels) - Allows you to define the width and height of the
symbols to be displayed.

• Angle - Allows you to set a rotation angle for the symbols to be
displayed.

Table 30: Known Symbol Shapes

Square Moon Circle Plus

Triangle Pentagon Cross Hexagon

298 The ERDAS APOLLO Style Editor

Sample Styles

Figure 108: Known Symbol - Sample Styles

Feature Numberer" Rule

Purpose

The "Feature Numberer" marks the features whose centroids are the
nearest from the center of the map with sequential numbers. A symbol
can be specified, in which case the label containing the feature number
is overlaid on top of it. A maximum number of symbols/labels can be
set; if reached, only the features that are the nearest from the map
center get numbered and displayed.

Rule configurator

The GUI configurator of the "Feature Numberer" rule is composed of
three panels:

• The "Graphic" panel: Provides generic graphic options; please refer
to “Uniform" Rule for more information.

Table 31: Known Symbol - Sample Styles

Place names White circles with a black stroke

Protected Areas Green crosses

Land Parcels Yellow filled triangle with a red stroke

The ERDAS APOLLO Style Editor 299

• The "Marker" panel: Allows the selection of a symbol on which the
numeric counter labels will be overlaid.

• The "Numbering" panel: Allows the configuration of the aspects of
the rule that affect numbering.

The "Marker" panel

This panel allows the selection of a symbol on which the labels
representing the numeric counter will be overlaid. It contains the
following configurable properties:

Figure 109: Feature Numberer - Marker Panel

• Symbol - You can either select a symbol already present in the
symbol library of the provider, or import a new one using the browse
("...") button.

• Size - The width and height (in pixels) to which the chosen symbol
will be resized for display on the map. An appropriate marker size
should be chosen according to the numbering font, so that the text
appears "circled" by the selected symbol.

The "Numbering" panel

This panel contains the properties related to the numbering (and
subsequent labeling) of features.

300 The ERDAS APOLLO Style Editor

Figure 110: Feature Numberer - Numbering Panel

Please refer to “Uniform" Rule for a description of the "Font", "Color",
"Halo/Width" and "Halo/Color" properties.

• Management/Max Count - Allows to constrain the number of
numbered features to be displayed on the map; for example, only
the five nearest interest points can be displayed this way. If the left-
side control is left unchecked, no constraints are applied and all
features are drawn.

• Management/Store As - This advanced property is useful only
when the rule is used in conjunction with external clients; when sets,
it instructs the rule to store a list of (feature, number) pairs in the
rendering context for later processing.

HTML Report" Rule This rule allows you to easily create a tabular HTML format for data
styled in the ERDAS APOLLO Style Editor.

This rule can be used with any kind of geometry. There are two places
in the tool where setting has to be done:

At the provider level, the "Edit Reporting Style..." menu item allows to
define the report layout: title, header, footer, etc.

At the level of each feature type, creating a "HTML Report Fragment"
style allows to set parameters specific to each feature type to output.

The ERDAS APOLLO Style Editor 301

The Global Report Panel

Figure 111: HTML Report - Global Report Panel

• Style Rule - This drop down menu allows you to select a document
template. At this release, there is only one template: the HTML
Report Composer.

• Title - This option allows you to define a title for the generated
HTML report. The text entered here will be included in the report
between the <title></title> tags.

• Style Sheet URL - In this parameter, you can specify the URL for
an external cascading style sheet (CSS). The produced HTML is
composed of a known set of objects and classes and may be styled
by an well formatted external CSS.

Here is a description of classes and objects used in the "HTML Report"
template:

HTML CSS classes available in this document:

title: Global level 1 title.
header:Included HTML fragment.

fc-title: Feature Collection level 2 title.
fc-table: Feature Collection table.
fc-table-header: Feature Collection table header.

302 The ERDAS APOLLO Style Editor

f-header: Feature header table row.
f-property-odd: Feature odd property table row.
f-property-even:Feature even property table row.
f-omitted-header: Omitted features header table row.

leader: Feature property row leader.
property-name:Feature property property name column.
property-value: Feature property property value column.

totals-title: Totals level 2 title.
totals: Computed totals text.

footer: Included HTML fragment.

• Character Set - Allows to define the set of characters to use. It
mainly applies for non-US users or when special characters are
used. Default is UTF-8.

• HTML Fragments - These two fields are meant to be filled with
specific HTML code to be added at the top and the bottom of the
generated document. This allows customization such as the ability
to add your company's logo to the header or to place a disclaimer at
the bottom of the page.

- Header - The HTML code to be added at the top of the
document.

- Footer - The HTML code to be added at the bottom of the
document.

Feature-specific HTML Panel

Figure 112: HTML Report - Feature Fragment Panel

• Style Rule - This drop down menu allows you to select a document
template. At this release, there is only one template: the HTML
Report Fragment.

The ERDAS APOLLO Style Editor 303

• Max. Count - This option allows you to set a maximum number of
features to be listed in the generated HTML report for this feature
type. This option can be deactivated by un-checking the control.

• Title - It allows you to define a title for your feature type. If none
given, the feature type name will be used.

Sample Styles

Here is a sample HTML page generated with this rule:

<html>
 <head>
 <title>HTML Report on Boston Shape</title>
 <style type="text/css">
 .f-header { background: #bbbbbb; font-weight: bold }
 .f-omitted-header { background: #bbbbbb }
 .f-property-even { background: white }
 .f-property-odd { background: #eeeeee }

 .leader { background: white }
 .totals { font-weight: bold }
 </style>
 </head>
 <body>
 <h1 class="title">HTML Report on Boston Shape</h1>
 <div class="header">
 <!-- start of header -->
 <h3>(For Demo and Doc purposes only)</h3>
 <!-- end of header -->
 </div>

 <h2 class="fc-title">Feature Collection (highways, 1
feature):</h2>
 <table class="fc-table" border="0" cellspacing="0"
cellpadding="3" width="100%">
 <tr class="fc-table-header">
 <td class="leader"> </td>
 <td class="property-name">Property Name</td>
 <td class="property-value">Value</td>
 </tr>
 <tr class="f-header">
 <td colspan="3">Feature highways.6</td>
 </tr>
 <tr class="f-property-even" valign="top">
 <td class="leader"></td>
 <td class="property-name">ROUTE_</td>
 <td class="property-value">7</td>
 </tr>
 <tr class="f-property-odd" valign="top">
 <td class="leader"></td>
 <td class="property-name">ROUTE_ID</td>
 <td class="property-value">7</td>
 </tr>
 <tr class="f-property-even" valign="top">
 <td class="leader"></td>

304 The ERDAS APOLLO Style Editor

 <td class="property-name">RT_NUMBER</td>
 <td class="property-value">28</td>
 </tr>
 <tr class="f-property-odd" valign="top">
 <td class="leader"></td>
 <td class="property-name">GEOMETRY</td>
 <td class="property-
value">MultiLineString(EPSG:26986)
 LineString(EPSG:26986)
 Point:(EPSG:26986)2 ...</td>
 </tr>
 </table>
 <p class="totals">
 Total Feature Count: 1
 </p>
 <div class="footer">
 <!-- start of footer -->
 <h3>Copyright ERDAS Inc. 2009</h3>
 <!-- end of footer -->
 </div>
 </body>
</html>

Figure 113: HTML Report- Header Result

The ERDAS APOLLO Style Editor 305

Figure 114: HTML Report- Footer Result

Variable Markers" Rule This rule is meant to pin a marker on geometries, optionally scaling and
rotating it according to feature's property values. This rule is also know
under the name Pinner.

The rule configuration is made of three panels:

• The Graphic panel: Where you define the type of antialiasing to use.
Please refer to “Uniform" Rule for more information about the
options available in the panel.

• The Marker panel: Where you define the marker to be used and how
to configure rotation and scaling according to the feature's
properties.

• The Label panel: Where you define the labeling. Please refer to The
Label Panel for more information about the options available in the
panel.

306 The ERDAS APOLLO Style Editor

The Marker Panel

Figure 115: Variable Markers - Marker Panel

• Symbols - This option lets you choose a symbol either in the drop
down list of standard symbols or by selecting an SVG, PNG or GIF
file on your local computer or mounted network disks. The chosen
symbol will be resized according to the property chosen in the "Size
Source" section.

There are two kind of symbols. Some contains all the stroke and fill
color within, the others can be customized using the "Inherits" section
of this panel.

The ERDAS APOLLO Style Editor 307

• Anti Clashing - Enables you to activate the Clash Manager on the
generated marker. The Clash Manager is in charge of making all
markers visible and avoid them to overlap either by slightly moving
them or group some of them in one single marker if they are to be
drawn in the same area. Clash Management is made according to
the map request's scale.

• Inherits section - This section is used to define the stroke and fill
colors for an "Inherited Style" symbol.

- Stroke Paint - Defines the stroke color for the selected
"Inherited Style" symbol. Color can be chosen from the drop
down color list or using the color palette by clicking the "..."
button. The stroke color can be set to none by unchecking the
check box left of the colors drop down list.

- Fill Paint - Defines the fill color for the selected "Inherited Style"
symbol. Color can be chosen from the drop down color list or
using the color palette by clicking the "..." button. The fill color
can be set to none by unchecking the check box left of the colors
drop down list.

• Size Source section - This set of options determines how the size
of the marker would be computed according to the selected
feature's property, a property's value range and a marker size
range. The final marker size is computed by mapping the value
range to the marker size range linearly.

- Property - The numeric property used when varying the size of
the marker.

- Value Range - The range (min., max.) of the values from the
numeric property. Values outside of this range will be
automatically clipped the nearest bound

- Marker Size Range - The range (min., max.) of allowed sizes
for the marker.

Table 32: Symbols

Blue Circle, Blue
Square, Green Circle,
Green Square, Red
Circle, Red Square

Draws, according to the selected symbol, a green
square or red circle, ...

Inherited Style Circle or
Square

Renders a Circle (or Square) which colors are
defined in the "Inherits" section of the Marker panel

308 The ERDAS APOLLO Style Editor

• Orientation Source section - This set of options determines how
the orientation of the marker would be computed according to the
selected feature's property and a rotation value range. The final
rotation is computed by mapping the value range to the [0-360]
interval linearly

- Property - The numeric property used when varying the rotation
of the marker.

- Value Range - The range (min., max.) of the values from the
numeric property. Values outside of this range will be
automatically clipped the nearest bound.

Figure 116: Variable Markers - Sample Style

Patterner" Rule This rule is meant to fill polygonal geometries with a symbol serving as
a pattern. A template mechanism on the symbol file name allows you to
change the symbol based on the values of feature types properties.

The rule configuration is made of three panels:

• The Graphic panel: Where you define the stroke and centerline
color. Please refer to “Uniform" Rule for more information about
the options available in the panel.

• The Pattern panel: Where you may define the pattern to be used.

The ERDAS APOLLO Style Editor 309

• The Label panel: Where you define all about labeling. Please refer
to The Label Panel for more information about the options available
in the panel.

The Pattern Panel

Figure 117: Patterner - Pattern Panel

• Symbol Template - Here you may provide a link to a symbol either
local or remote through an HTTP link. You may also use a relative
reference to the rendering symbol directory of the portrayal engine.

• You may also enter a template evaluating to the name of a symbol
in the renderer library, with portions between curlies substituted with
the corresponding feature property values, e.g.: 'lib/{TYPE}-
{CODE}.png', at rendering time. Literal left curlies can be included
by doubling them.

• Size - The pixel-equivalent size of a pattern title

• Pattern Color Source section

- Foreground - Here you may select an integer (RGB 32 bits)
property of the feature whose value will be used as the pattern
foreground color.

310 The ERDAS APOLLO Style Editor

- Background - Here you may select an integer (RGB 32 bits)
property of the feature whose value will be used as the pattern
foreground color.

Symbol Roller" Rule

Purpose

The "Symbol Roller" styling rule stamps scaled/rotated symbols along
curves. It obtains the symbols to use for stamping by cycling in an user-
configured list.

Rule configurator

The GUI configurator of the "Feature Numberer" rule is composed of
two panels:

• The "Graphic" panel: Provides generic graphic options; please refer
to “Uniform" Rule for more information.

• The "Symbols" panel: Provides the configuration mechanism for the
list of symbols used for stamping.

The "Symbols" panel

Figure 118: Symbol Roller - Symbol List

This panel allows to insert, edit, delete and reorder the entries of the list
of symbols used for stamping. Note that the rule cycles in that list to
determine the next symbol to apply, so the order of the entries affects
the rendering.

The ERDAS APOLLO Style Editor 311

The list contained in the panel provides the following commands (which
can be accessed by the contextual menu shown when the control is
right-clicked):

• New... - Creates a new entry, and show the companion
configuration dialog. The entry will be inserted in the list when the
dialog is closed by selecting "OK".

See The entry configuration dialog for more information.

• Move Up - Moves the current entry up by one position.

• Move Down - Moves the current entry down by one position.

• Delete - Removes the current entry for the list (destructive
operation).

• Properties... - Shows the companion configuration dialog for the
current entry. The "Next" command is a simple shortcut that allows
to skip to the next entry once the current one is configured.

See The entry configuration dialog for more information.

The entry configuration dialog

Figure 119: Symbol Roller - Entry Editor

312 The ERDAS APOLLO Style Editor

This dialog is shown when one of the "New..." or "Properties..."
commands described above is invoked.

The properties presented in this dialog are mostly similar to those
referred in the "Graphic" panel description in “Uniform" Rule.
However, some attributes are rule specific, such as the symbol
orientation option, in the center of the window. With this option you can
change the original orientation of the symbol in order to adjust it to your
specific needs, simply by changing the orientation of the arrow to the
desired position.

Common Elements This section describe windows and palette commonly used in the style
definition like color palette or font chooser.

The Color Chooser

The Color Chooser is a pop-up window accessible from anywhere in the
application where a color is requested. It offers the possibility to pick
one color from an RGB palette or to make a specific color with Hue-
Saturation-Brightness values or Red-Green-Blue values. It also offers
the ability to set an opacity level for a rendered color.

The Swatches Panel

Figure 120: The Color Chooser - Swatches Panel

The ERDAS APOLLO Style Editor 313

Select one of the swatches available from the complete palette or from
the recently used colors (in the "recent" palette showing the recently
chosen colors).

The Preview section displays a set of sample usage of the selected
color for texts, areas, and reverse texts.

The HSB Panel

Figure 121: The Color Chooser - HSB Panel

This panel allows you to select a color by giving its hue-saturation-
brightness values or selecting from within the color gradient. The panel
provides, as an indication, the values of the selected color in RGB.

314 The ERDAS APOLLO Style Editor

The RGB Panel

Figure 122: The Color Chooser - RGB Panel

The RGB (Red-Green-Blue) panel allows you to select a color by
entering its RGB values (ranging from 0 to 255).

The ERDAS APOLLO Style Editor 315

The Opacity Panel

Figure 123: The Color Chooser - Opacity Panel

The opacity panel provides a way to set an opacity or transparency level
to the selected color. Opacity values range from 0 to 255, 0 being totally
transparent and 255 completely opaque.

316 The ERDAS APOLLO Style Editor

The Font Selector

Figure 124: The Font Selector

The font selector is a pop-up window used each time a font has been
requested as your input. It offers basic font selection behavior and
allows you to select one of the fonts installed on your local machine.

Be sure to select a font which will also be available on the server
where you want to deploy your styles. If the selected font is not
available on the server, the server will substitute the most similar
system font available.

FAQ/Troubleshooting 317

FAQ/Troubleshooting
This chapter gives answers to various questions as well as
troubleshooting techniques. It also addresses several common use
cases.

FAQ

I want to send WMS requests to a Map Server but there seems to be several
syntaxes.

ERDAS APOLLO Server currently supports syntaxes for OGC WMS
1.0.0, WMS 1.1.1 and WMS 1.3.0. Please refer to The Web Map
Service (WMS) on page 573, for a description of the allowed syntaxes.

I want to send WMS requests to a Map Server, but I don't know what are the allowed
parameters.

The Web Map Service (WMS) on page 573 describes the various
requests that a WMS supports, and distinguishes between the several
versions of the OGC Web Map Server specifications.

I want to send requests to a WFS but I don't know the proper syntax to use.

There are two types of HTTP requests to a WFS: HTTP-GET and
HTTP-POST, and two versions of the WFS specification: WFS 1.0.0
and WFS 1.1.0. The Web Feature Service (WFS) on page 583
describes those alternatives.

I want to send WFS GetFeature requests to a Feature Server but I don't know the
allowed parameters.

The Web Map Service (WMS) on page 573 describes the various
requests that a WFS supports, and distinguishes between the several
versions of the OGC Web Feature Server specifications.

Is SOAP supported by ERDAS web services?

Yes, ERDAS's vector (WFS), coverage (WCS) and raster (WMS)
services support SOAP requests.

The SOAP requests are encapsulating the "OGC XML Stack" defining
the XML syntax to be used in HTTP-POST requests. So, for example,
if a WFS GetCapabilities request in HTTP-POST is sent, the request
will look like:

318 FAQ/Troubleshooting

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetCapabilities version="1.0.0" service="WFS"
 xmlns:ogcwfs="http://www.opengis.net/wfs" />

This can easily be converted into a SOAP request by adding the
<Envelope> and <Body> tags around the XML statements. The SOAP
request will look like:

<?xml version="1.0" encoding="UTF-8" ?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" >
 <soap:Body>
 <ogcwfs:GetCapabilities version="1.0.0" service="WFS"
 xmlns:ogcwfs="http://www.opengis.net/wfs"/>
 </soap:Body>
</soap:Envelope>

Is the POSTGIS package required for the POSTGRESQL connector?

No, it is supported but not mandatory. The POSTGIS package provides
support for geometry collection (multi XXX) storage and for associated
geometry operations (through the "GEOS" module), but ERDAS
APOLLO also supports PostgreSQL without the POSTGIS extension.

I only want to give access to my vector data as maps, and not GML nor Shapefiles.
Is it possible?

Yes, it is. In the Data Manager when editing the provider,
Miscellaneous tab > Enabled Interface > WMS or WCS/WFS. Then
all the OGC WFS request types (WFS GetCapabilities,
DescribeFeatureType, GetFeature and Transaction) will be disabled
and will only allow WMS GetCapabilities, GetMap, GetFeatureInfo and
DescribeLayer requests. Note that the opposite can be done as well.
Disable the WMS requests and allow the WFS requests.

I sent a WMS GetFeatureInfo request and I got a certain set of entities back. How can
I tune this set?

In the OGC-WMS 1.1.1 specification, the GetFeatureInfo request is
intended to search on the clicked point (given in pixel space). In
ERDAS's implementation, the search is made in a polygon of 10x10
pixels around the clicked point. The size of this box can be changed by
adding the "CAPTURE" parameter in the request. The default value is
10 pixels. It can be set to any positive integer value.

FAQ/Troubleshooting 319

I want the ERDAS APOLLO Style Editor and the ERDAS APOLLO Administration
Console to access my services through a proxy. Is it possible?

For the ERDAS APOLLO Style Editor, a desktop application, edit the
styleeditor.sh file with a text editor and add -
Dhttp.proxyHost=MYPROXYHOST -
Dhttp.proxyPort=MYPROXYPORT just after the java command where
MYPROXYHOST is the IP of the proxy and MYPROXYPORT is the port
of the proxy.

I want my WFS-T over Oracle to run long transactions. Is there a way to keep my
requests coherent while the transaction is processed?

One possible solution is for an ERDAS WFS to be configured with
Oracle Workspace Manager through an SQL statement being executed
at instantiation time. So, you could have two WFSes addressing the
same data source, on two different workspaces. One WFS would be
used for the long transaction, by duly authorized people, the second
WFS being publicly accessed. That second WFS will not see any
change until a merge of the workspaces is executed. The syntax to link
a WFS provider with an Oracle Workspace is:

<LSTRING NAME="initscript" SUBST="false">
{call dbms_wm.gotoWorkspace('MYWORKSPACE')};
 </LSTRING>

The OGC WFS 1.0 and 1.1 specifications have no provision for long
transactions management, meaning that after that initialization phase,
no other explicit action can be done on the workspace by the WFS (like
activate versioning, merging or removing a workspace, ...). Such an
action has to be taken independently from the WFS. OGC is currently
working on WFS 1.2 and FE 1.2, and "long transactions" management
is being addressed.

ScaleHint and ScaleDenominator, what does that correspond to?

ScaleHint suggests minimum and maximum scales for which it is
appropriate to display the layer in the WMS 1.1.1 capabilities document.
The property is optional and just a hint.

320 FAQ/Troubleshooting

Definition given by OGC (OGC WMS 1.1.1 Specification, section
7.1.4.5.8): Consider a hypothetical map with a given Bounding Box,
width and height. The central pixel of that map (or the pixel just to the
northwest of center) will have some size, which can be expressed as
the ground distance in meters of the southwest to northeast diagonal of
that pixel. The two values in ScaleHint are the minimum and maximum
recommended values of that diagonal.

The <MinScaleDenominator> and <MaxScaleDenominator> elements
define the range of scales for which it is appropriate to generate a map
of a Layer. The common pixel size is defined to be 0.28mm x 0.28mm
(millimeters). This definition is given by OGC (OGC WMS 1.3.0
Specification, section 7.2.4.6.9).

How to transition from a ScaleHint value to a ScaleDenominator value?
We convert from ScaleHint to ScaleDenominator by dividing the Min
and Max of the ScaleHint by 0.0003959797974 (length of the diagonal
of a standard pixel, i.e. 0.00028 metre) * sqrt(2).

Troubleshooting

There is some strange behavior in my GUI on Windows: For example, there is an
incorrect or lack of the screen refresh.

Deactivate the hardware acceleration.

The style I have just written does not seem to produce any results. What is the
problem?

First, ensure that the style is stored in the right place in one of the
directory hierarchies included in the search path. Check that the feature
type and style names are lowercase and that the style filename and
extension have the right case. Enable the ERDAS APOLLO Portrayal
Engine logs (inside the provider.fac file) and check the search
sequence to ensure it matches one of the deployed styles.

If the ERDAS APOLLO Portrayal Engine successfully loads the style,
check the style properties or SLD syntax as well as the exception logs.

FAQ/Troubleshooting 321

How can I prevent Oracle 10gAS from producing an OutOfMemory error when
deploying ERDAS APOLLO?

As in the other application servers, it is recommended that enough
memory is provided to the JVM when running ERDAS servlets. A
minimum of 256 MB is mandatory - more is better. With Oracle
Application Server, an alternative is to deploy the webapps in more than
one OC4J container. Allocate one container for erdas-apollo, and one
for apollo-client.

Why is my output from an Indexed WCS partly empty? It looks as if all the images
are not mosaicked?

By default, the WCS IndexProvider will only output, or render 500
granules to prevent long waiting time for small scale requests.

I want to use the Tomcat connection pool for my WFS to manage connections to
Oracle, but I get an "oracle.sql.Number" error. Is it supported?

Yes, you can use a data pool different from the internal one to connect
to Oracle, by setting the "JNDI Data Source" field of the "Data Source"
tab page for your provider to "java:comp/env/jdbc/OracleDB" in the
ERDAS APOLLO Data Manager. But you will also need to make sure
that the proper JDBC library is used. Indeed, ERDAS provides, in the
WEB-INF/lib directory of the webapp, the Oracle JDBC Thin driver. It
must be removed from your classpath if you want the driver from
Tomcat to be used. Simply removing ojdbc****.jar from that directory
should solve the problem.

I want to define properties which are measurements, and associate them units. I
configured my mapping file, but the units are ignored.

In the mapping file the association has to be declared AFTER the unit
and the property are known. We recommend the <UnitAssociation>
element to be set at the end of the mapping file.

When displaying arcs, they look like line strings

When the antialiasing is off, the JDK renderer tries to flatten the curve.
On our side we assure that at least 200 pts are drawn, which is enough
on most cases, except for very large arcs or circles.

I enable all operations on my WFS, but the "Insert" operation does not appear in the
capabilities

If the "Primary" tag is not set in the mapping file for your feature type, or
the <NoPrimary> tag is set, the Insert operation is disabled.

322 FAQ/Troubleshooting

After I made changes to my configuration, clicking "Restart Service" or “Flush
service cache” in the ERDAS APOLLO Data Manager does not suffice for my
changes to be taken into account. Why?

Caching is the cause of the changes to be ignored: most of the time,
clicking "Restart Service" link and "Flush Service Cache" in the ERDAS
APOLLO Data Manager forces the reloading of the configuration files
(mapping, security, ...). But the application server itself is sometimes
doing some caching, so that the files are not actually reread. Restarting
the application server, along with clicking "Restart Service" and "Flush
Service Cache" in the ERDAS APOLLO Data Manager, will always
solve the problem.

Rebuilding the Webapps 323

Rebuilding the Webapps
The Ant script has been built during the installation and is located at
<APOLLO_HOME>/build.xml, in order to rebuild the webapps with their
default configuration at any time.

Ant is installed along with the product, in the tools/ant folder. For
automatic call of this tool, add
$APOLLO_SERVER_INSTALL/tools/ant/bin to your PATH.

To do this, enter ant (if it is in your PATH) or
<APOLLO_HOME>/tools/ant/bin/ant instead, in the prompt of
$APOLLO_SERVER_INSTALL directory as shown below:

Example:Rebuilding Webapps using Ant
ant tomcat5

Buildfile: build.xml

init:

tomcat5:

configure-eas-tomcat5:

init:

configure-tomcat5:

clean:
 [echo] erdas-apollo::clean - remove temporary/intermediate
files

setup-default:
 [echo] erdas-apollo::setup-default - copy and configure
default webapp to b
uild dir
 [mkdir] Created dir: $APOLLO_SERVER_INSTALL\webapps\erdas-
apollo\build
 [copy] Warning: $APOLLO_SERVER_INSTALL\webapps\erdas-
apollo\default not found.

build-erdas-apollo:

configure-eas-full:
 [copy] Copying 825 files to
$APOLLO_SERVER_INSTALL\webapps\erdas-apollo\build
 [copy] Copied 183 empty directories to 1 empty directory
under $APOLLO_SERVER_INSTALL\webapps\erdas-apollo\build

configure-eas-light:

324 Rebuilding the Webapps

configure-eas:

copy-custom-providers-resources:

replace-tokens:

build-eas-tomcat5:

package:
 [delete] Deleting: $APOLLO_SERVER_INSTALL\dist\tomcat5\erdas-
apollo.war
 [zip] Building zip:
$APOLLO_SERVER_INSTALL\dist\tomcat5\erdas-apollo.war
 [delete] Deleting directory
$APOLLO_SERVER_INSTALL\webapps\erdas-apollo\build

clean:
 [echo] apollo-client::clean - remove temporary/intermediate
files

setup-default:
 [echo] apollo-client::setup-default - copy and configure
default webapp to
build dir
 [mkdir] Created dir: $APOLLO_SERVER_INSTALL\webapps\apollo-
client\build
 [copy] Copying 1668 files to
$APOLLO_SERVER_INSTALL\webapps\apollo-client\build

build-erdas-apollo:

replace-tokens:

build-eas-tomcat5:

package:
 [delete] Deleting:
$APOLLO_SERVER_INSTALL\dist\tomcat5\apollo-client.war
 [zip] Building zip:
$APOLLO_SERVER_INSTALL\dist\tomcat5\apollo-client.war
 [delete] Deleting directory
$APOLLO_SERVER_INSTALL\webapps\apollo-client\build

BUILD SUCCESSFUL
Total time: 2 minutes 34 seconds

If you want to build the webapps for other application server, you
just have to use a goal other than the default one:

• generic: generate war files for generic application servers

• jboss: generate ear files for the JBoss 4.2 application server

• tomcat5: generate war files for the Tomcat 5.5 application server

Rebuilding the Webapps 325

• tomcat6: generate war files for the Tomcat 6 application server

• weblogic: generate war files for the WebLogic 10.1 application
server

326 Deploying WAR Files on Supported Servlet Engines

Deploying WAR Files on Supported Servlet
Engines

Web Applications are commonly packaged as a single file with the
".war" extension. During installation of your ERDAS APOLLO Server,
the webapps are automatically generated and stored in the installation
directory. The way to deploy one or more of those web applications in
a servlet engine is specific to each of those products. This chapter gives
guidelines on how to deploy your applications in some of the supported
servlet engines.

As soon as something has to be modified in your web app (new license,
patched library, ...), you first need to update the expanded directories in
the installation directory. Then, you have to rebuild your war files and
redeploy them. To rebuild the war files, see Rebuilding the Webapps.

JBoss See the deployment on JBoss in the ERDAS APOLLO QuickStart
Guide.

Jakarta Tomcat See the deployment on Tomcat in the ERDAS APOLLO QuickStart
Guide.

Detailed Parameters of a Provider 327

Detailed Parameters of a Provider

Lists of Possible
Parameters

The following tables list the entire set of possible <PARAM> elements
that can be given to a provider. Those parameters only accept two
attributes: "NAME", which is the key of the parameter, and "VALUE",
which is its string value. A provider can also contain parameters with
complex properties, i.e. not just a string value, but one or more sub-
parameters. These complex parameters are stored in elements named
<PARAMBLOCK>. They have a "NAME" attribute, and their value is a
set of sub-elements which are themselves <PARAM> or
<PARAMBLOCK> elements. In the tables below, those parameter
blocks appear with the form "NAME (PARAMBLOCK)" and their values
are a table of sub-parameters. A third type of parameter, named
LSTRING, is used to give the parameter a free long string value. It has
a NAME attribute, a SUBST attribute and a free-text as PCDATA. It
looks like: <LSTRING NAME="initscript">a text string</LSTRING>. Its
common use is to provide a string in another language (SQL, Java, ...)
for execution by another engine. The SUBST attribute, if set to false, will
prevent the "{...}" pattern from being substituted like a variable.

Some parameters apply to most provider types. Others are more
specific to certain data sets. Others apply in the scope of only one
framework (map, vector, coverage, ...). The tables below list those
parameters exhaustively.

The tables are organized in such a way that you will rapidly find which
parameters apply to your provider: each sub-section below applies to a
given providers.fac, and in each table, the providers to which the
parameter applies are checked.

The first table lists the parameters that apply to all frameworks (map,
feature, coverage, terrain).

The parameter names are case-insensitive. The values are
generally case-sensitive.

Parameters
Common to All
Types of Providers

Those parameters are understood by each provider type in each
framework, and are used to enrich service metadata (capabilities)
documents. The way they appear in the document vary depending on
the pertaining OGC specification.

328 Detailed Parameters of a Provider

Table 33: Parameters Applying to All Providers

NAME Detailed Meaning

ABSTRACT Defines the service abstract (or description) in the generated service
metadata (capabilities) document. Optional.

CONTACT (PARAMBLOCK) Holds a set of <PARAM> elements, which describe the "contact"
information that will appear in the <Service> tag of the capabilities in the
ContactInformation or ResponsibleParty sub-section.

• Organization - company name

• AddressType - Postal, ...

• AddressBody - street, box nr, ...

• City - city name

• PostCode - postal code

• State - state name when applicable

• Country - country name

• Person - full name

• Position - job title

• Voice - phone nr

• Fax - fax nr

• Email - email address

• OnlineResource - URL for more information

COPYRIGHT Defines a text to appear in the upper left corner of each image
generated by a GetMap request, and in the GML document produced by
a GetFeature request. Optional.

HTTPCACHE This parameter controls the data returned in the last-modified http
header. If set to "now" (the default), the current date is returned if set to a
date (ISO 8601 format), this date is returned in the last modified header.
A specific date allows the Internet chain to cache the result. (use it with
caution!)

KEYWORDS A comma-separated list of keywords that will appear in the service
metadata (capabilities) document. Optional.

LEGENDURL The URL template to legend icons that will appear in LegendURL tags in
the WMS service metadata (capabilities) document. Optional. A blank
value uses the value of the <LEGEND> tag in the <CONFIGURATION>
section.

METAURL The URL template to metadata files that will appear in MetadataURL
tags in the capabilities document. If not set, no MetadataURL will
appear, but if it is set to an empty string (VALUE=""), it takes the value
given in the <METADATA> tag of the <CONFIGURATION> section.
Optional.

Detailed Parameters of a Provider 329

OWSEXTENDEDURL An URL (relative or not) to a file containing the ows extended
capabilities of the operations metadata. The XML root should be
ExtendedCapabilities elements and be a correct XML file.

OWSINFO (PARAMBLOCK) Starting with OGC Web Services specifications versions WMS 1.3, WFS
1.1, WCS 1.1 and WTS 1.0 based on the "OWS Common" one, this
parameter holds a set of <PARAM> elements, which correspond to the
content of the ServiceIdentification and ServiceProvider sections of the
service metadata (capabilities). Similarly to the "CONTACT" parameter,
this paramblock-type property holds the following sub-elements (also
described in the OGC OWS Common specification): Abstract,
AdministrativeArea, City, Code, CodeSpace, Constraints, ContactHours,
ContactInstructions, ContactURL, Country, DeliveryPoints, Emails,
Faxes, Keyword1, Keyword2, Keyword3, KeywordCode1,
KeywordCode2, KeywordCode3, KeywordCodeSpace1,
KeywordCodeSpace2, KeywordCodeSpace3, Organization, PostCode,
ResponsibleName, ResponsiblePosition, ResponsibleRole,
ResponsibleRoleSpace.

OWSINFOURL Starting with OGC Web Services specifications versions WMS 1.3, WFS
1.1, WCS 1.1 and WTS 1.0 based on the "OWS Common" one, we use
a single template for the ServiceIdentification and ServiceProvider
sections of the service metadata (capabilities). This template is a flat file
referenced by this parameter. Mandatory.

REMOVE_INFO_FORMAT The comma-separated list of internal formats to remove from the
GetFeatureInfo request type capabilities and to disable when requested.
The possible values are: GML, HTML, TXT, XML. Optional.

REMOVE_MAP_FORMAT The comma-separated list of internal formats to remove from the
GetMap request type capabilities and to disable when requested. The
possible values are: GIF, JPEG, PNG, SVG, TIFF, WBMP, XBMP.
Optional.

SECURITY This optional parameter allows limiting access to the service to
authenticated users. At run time, the user will be asked to identify before
being allowed to retrieve data. Its possible values are:

• a string, composed of a couple of blank-separated names: "name
password"

• "provider", security is then redirected to the underlying provider, if it
supports it

• a string, composed of an encrypted couple of blank-separated
names, for Digest-mode authentication. This encrypted string is
obtained by the tool com.ionicsoft.security.web.AuthentifierFactory,
packaged in tools/ows.

SECURITYFILTER URL of a document. When fine-grain security is activated, this
parameter allows to relocate the filter.xml file. By default, this file is in
WEB-INF/classes/com/ionicsoft/security/auth, thus applying the filter to
ALL providers. Optional.

Table 33: Parameters Applying to All Providers (Continued)

330 Detailed Parameters of a Provider

Parameters for the
Map Framework

The "map" servlet allows to expose as OGC-compliant WMS sets of
data or non-compliant map servers. The following table lists the
parameters that apply to one or more of the providers supported by this
servlet. Please verify that your provider type uses a given parameter
before using it.

The third column in the table below mentions the types of providers to
which the parameter applies. Some of them are grouped into sets which
are:

• Image: the 3 image providers (Simple, MultiSimple and Layer)
publishing sets of raster data files

• Database: the 2 providers accessing databases like ArcSDE-Raster
and Oracle 10g GeoRaster

• All: all providers in the map framework

SECURITYRESOLVER URL of a document or "container". When fine-grain security is activated,
this parameter allows to relocate the resolver.xml file or delegate the
Subject building to the underlying provider. By default, this file is in
WEB-INF/classes/com/ionicsoft/security/auth, thus applying the filter to
ALL providers. Optional.

SERVICE The name of the service (as returned in the capabilities). This parameter
allows mentioning the proper Service Name in the <Service> section of
the capabilities document. Optional.

SRSSTRICTBEHAVIOR This parameter allows only requests made in a SRS published in the
capabities even if it is able to do more. The default value is "false".

TITLE This parameter allows mentioning a Service Title (or label) in the
<Service> section of the capabilities document. Optional.

USESTANDARDSRS This parameter allows to include standard SRSes (currently
EPGS:4326) in the capabilities document. The default value is "true".

Table 33: Parameters Applying to All Providers (Continued)

Table 34: Parameters Applying to Map Providers

NAME Detailed Meaning Applicable
Providers

AGGREGATES (PARAMBLOCK) This block contains a set of sub-blocks, one per
virtual layer to expose. See the definition of the
Context provider for details.

Context provider

AJUST_BOX If set to TRUE, forces the ImageServer to keep the
image aspect ratio. Set to FALSE by default.

Image

Detailed Parameters of a Provider 331

ALLOWSEARCH Allows a search for the first file able to be decoded if
the path is a directory.

Single Image

CASCADE Shows the list of layers to expose. It can contain a
comma-separated list of layer names, the "*" sign
for all layers, or an empty string "" for none.

Context provider

CASCADE_LOGGING If set, logs the messages produced by the services
invoked by the context (default is true).

Context provider

CONNECT The connect string describing the general URL to
connect to the data source. It must have the
structure of the generalized data source URL:
protocol://host:port/p1+v1/p2+v2, e.g.,
oracle://erdas/sid+erdas/user+dummy/password+d
ummy . However, for some types of providers, the
string can differ slightly. Please refer to Provider
Types for a detailed description of the connection
strings. See also "defaultRowPrefetch" description
below (1).

Database

DISABLED_CAPABILITIES The comma-separated list of information to NOT
include in the capabilities document. One or more
of ScaleHint, Resolution.

All

FILE Allows to explicitly mention the index file name.
Defaults to PRIME_IDX . Only applies to the Image
Collection Provider.

Image Collection
provider only

FORWARDAUTHENTICATION If set, the current authentication is propagated to
the the services invoked by the context.

Context provider

ISAUTHORIZATIONEXCEPTION
CRITICAL

Set it to true if an authorization exception (such as a
request for an image at a forbidden scale) is
considered critical. If set to false, the image will
simply not appear; if set to true, an exception will be
thrown.

Image

ISCONFORMED If set to true, tells the framework that it can rely on
the output from the provider (background color,
transparency) and does not need to apply color
changes which is always time consuming.

Image

LAYERABSTRACT Descriptive text given to the layer for the WMS
simple or layered image provider.

Simple Image and
Image Collection
providers

LAYERS URL to the configuration file. Map Dressing
provider

LAYERTITLE Human title given to the layer for the WMS simple
or layered image provider.

Simple Image and
Image Collection
providers

Table 34: Parameters Applying to Map Providers (Continued)

332 Detailed Parameters of a Provider

LIMITEDCOLOR This parameter, which value is a color (rgb,
hexadecimal or named), will mention what is the
single background color that the connected server
can provide. It will allow the servlet to support other
requested background colors.

All

LIMITEDSIZE Some map servers can only output map with a
given pixel size. If that size is given in that
parameter, the servlet is able to manage requests
with other sizes.

Proxy WMS
provider

LIMITEDTRANSPARENCY Some map servers sometimes do not support
transparency for formats that do support it, usually
GIF and PNG. This parameter, which value is the
format name, allows the servlet to add transparency
to non-transparent images.

Proxy WMS
provider

NAME Layer name. Simple Image and
Image Collection
providers

PASSWORD The user password used if the proxied WMS server
is protected by a simple authentication schema
such as basic or digest.

Proxy WMS
provider

PATH For data that are flat files, their location is given as a
path.

Image

Table 34: Parameters Applying to Map Providers (Continued)

Detailed Parameters of a Provider 333

PORTRAYCONFIG (PARAMMAP) Defines the portrayal configuration.

<PARAMMAP NAME="portrayconfig"
DIR="/home/java/javatest/rendering2"
LOADER="java,property,sld"
DIRV1="/home/java/javatest/renderingv1"
VERSION="2"
MANAGEMENT="always" />

• DIR - the directory where portrayal styles are
searched

• LOADER- -comma-separated list of portrayal
language, telling the order of search of those
languages. The languages are: java, property,
sld.

• DIRV1 - directory to search for version 1
property styles.

• VERSION - styles version used in DIR. Default
is 2.

• MANAGEMENT - engine caching behavior for
previously loaded styles. "Always" implies no
caching, "none" means full caching, and
"checked" means that the style timestamp is
checked before re-loading.

• Portray provider

PREFERREDFORMAT The preferred output format of the provider. It
appears in the capabilities document.

All

PUBLISHEDSRS The list of srs to appear in the service metadata
(capabilities) in addition to the srs parameter value.

All

QUALITY (PARAMBLOCK) This parameter allows to fix the quality of the image
output by a GetMap request.

<PARAMBLOCK NAME="quality" >
 <PARAM NAME="PNG" VALUE="30" />
 <PARAM NAME="JPEG" VALUE="10" />
</PARAMBLOCK>

• PNG - this parameter determines whether
output is an 8-bits or 24-bits image. The value
ranges from 0 to 100. Less than 50 means 8-
bits. The default is 70.

• JPEG - this parameter determines the level of
quality for JPEG output. The value ranges from
0 to 100, 0 being the maximum compression.
Default is 75.

• All

Table 34: Parameters Applying to Map Providers (Continued)

334 Detailed Parameters of a Provider

REMOVE_SRS The list of srs to hide from the capabilities
document. Used to prevent the underlying WMS
from using this SRS even if requested by the client.

Proxy WMS
provider

RULEDIR Root directory of the portrayal styles. Map Dressing
provider

SORT_LAYERS Requires the sorting of the layers by their name in
the capabilities output. The default value is true,
except for the PROXY provider.

All except Pyramid
provider

SRS The SRS ID of the images. When also set in the file
header or database, the SRS will be overridden by
the one given in the providers.fac .

Image, Database

URL The URL of the map source to connect to. Proxy WMS
provider

USER The user name used if the proxied WMS server is
protected by a simple authentication schema such
as basic or digest.

Proxy WMS
provider

anonymous (PARAMBLOCK) Defines the pyramid. One PARAMBLOCK of this
type per pyramid level

1..n

• MINSCALE - minimum scale at which that
provider will be called. The default value is 0.

• MAXSCALE - maximum scale at which that
provider will be called. The default value is
Double.MAX_VALUE.

• ID - name of the provider to proxy.

• MASTER - Must be set to either "true" or "false".
"True" signifies that the provider will export the
capabilities information (service name, title and
abstract, supported requests, layer list,
supported SRSes) to the pyramid. The default
value is "false". It is highly recommended to
have only one proxied provider labelled
"master". If more than one proxied provider is
set as the "master", the one that covers the
lowest scale will be used.

• Pyramid provider

DISABLED_CAPABILITIES A list of some information disabled in the
capabilities section. It is a comma separated list of
values. Allowed values are "scalehint", "resolution".

All (but has only
effect on the WMS
interface of our
WCS)

Table 34: Parameters Applying to Map Providers (Continued)

Detailed Parameters of a Provider 335

(1) defaultRowPrefetch: This additional parameter of the "connect" string
parameter allows optimizing performance by allowing the framework to
extract data from the data server by blocks of records. The value is the num-
ber of records to fetch together and decrease the traffic. The best gain in per-
formance identified was when the database was not on the same machine as
the Web Service. In this case, the network is a bottleneck and the defaultRow-
Prefetch provides a huge gain.

<PARAM NAME="connect"

VALUE="oracle://myhost:1521/user+boston/password+boston/SID+BOS
TON/defaultRowPrefetch+1000/"
/>

Parameters for
Vector Providers
(WFS Servlet)

The third column in the table below mentions the types of providers to
which the parameter applies. Some of them are grouped into sets which
are:

• Database: the providers accessing databases like ArcSDE,
PostgreSQL/PostGIS, Oracle Thin and Oracle OCI.

• All: all providers in the wfs framework

DOCLIPPING Requires the clipping of the request box by the
server box. The possible values are "always",
"never" or "auto". In "auto" mode, the clipping is
only done for non ERDAS WMS.

Proxy WMS
provider

Table 34: Parameters Applying to Map Providers (Continued)

Table 35: Parameters Applying to Vector Data Providers

NAME Detailed Meaning Applicable
Providers

CONNECT The connect string describing the general URL to connect to the
data source. It must have the structure of the generalized data
source URL: protocol://host:port/p1+v1/p2+v2, e.g.,
oracle://erdas/sid+erdas/user+dummy/password+dummy .
However, for some types of providers, the string can differ slightly.
Please refer to Provider Types for a detailed description of the
connection strings. See also "defaultRowPrefetch" description
below (1). Note that the "connect" parameter is ignored if
"jndidatasource" is set.

Database,
WFS Proxy
provider, GML

CREDENTIALNAME The name of the credential to use to retrieve the login credential
associated to the current user. This name is any URL. The login
credential will be retrieved on the current user(subject) using this
name and the 'database' service (see the Advanced Security
chapter).

Database,
WFS Proxy
provider

336 Detailed Parameters of a Provider

DISABLEDINTERFACE Allow to disable an interface. The value is a comma separated list of
interface names. Current interfaces are wfs and wms. This is
intended to make a provider a strict wfs or a strict wms.

All

FETCHSIZE Optional parameter that specifies the number of rows to fetch from
the database. If the parameter is not used at all, 1000 rows are
fetched. If it is used and its value is a positive number, the number of
rows specified by the value will be fetched. If it is used and its value
is set to any negative number, all of the rows will be fetched.

PostgreSQL
and MS SQL
Server
providers

GEOMTEXTSIZE Forces use of JDBC preparedStatements in GetMap requests to an
Oracle provider. The value is the number of ordinates beyond which
the SQL query is formatted with bind variables. Default value is 500.
A value of 0 disables the reformatting. A value of 1 will always apply
it. Only applies to the Oracle and Oracle OCI Providers.

Oracle Thin
and Oracle
OCI providers

INITSCRIPT (LSTRING) This property allows initialization actions on the underlying data
source system. One use is an SQL statement for creation of a
functional index, i.e., an index on a function, on a RDBMS like
Oracle.

<LSTRING NAME="initscript" >
 ALTER SESSION SET QUERY_REWRITE_ENABLED= TRUE;
 ALTER SESSION SET QUERY_REWRITE_INTEGRITY = TRUSTED;
</LSTRING>
The user must have the "QUERY_REWRITE" privilege on the
appropriate tables. Another use is the call to the data source
initialization methods for the Simple Framework provider.

<LSTRING NAME="initscript" >
 call
MAPINFO.LOAD_FILE('MID','C:\Erdas\data\mapinfo\boston\h
ighways.MID',
 'C:\Erdas\data\mapinfo\boston\highways.MIF',
 'highways','EPSG:26986');
 call csv.load_file('DM',
'C:\Erdas\data\csv\country.csv',
 'NAME, POPULATION,GEOM', 'STRING,INTEGER,GEOMETRY',
 'EPSG:4326',-180,-90,180,90);
</LSTRING>
A third use is to call call a procedure of the datastore, like setting a
workspace on Oracle. Such a call implies to surround the statement
by curly braces, and so to add the SUBST="false" to prevent those
braces from being interpreted as enclosing variables.

<LSTRING NAME="initscript" SUBST="false">
{call dbms_wm.gotoWorkspace('MYWORKSPACE')};
</LSTRING>

Database,
Simple
Framework
provider

Table 35: Parameters Applying to Vector Data Providers (Continued)

Detailed Parameters of a Provider 337

JNDIDATASOURCE The framework can make use of a connection pool provided by the
container (instead of Apollo's internal one). The parameter must
contain a connection pool data source name, in the form of a string
of the form: "java:comp/env/my-res-ref-name" where "my-res-ref-
name" is the name defined in the JNDI InitialContext object provided
by the container. For example, in BEA WebLogic 6.1, the
information is found in the <res-ref-name> section in the ejb-jar.xml
file. Note that this parameter has priority over the "connect"
parameter.

Database

MAPPING The URL of the mapping resource document (the description of how
defined types are mapped onto the underlying data store). The
value is the URL of an XML document describing the mapping
between the feature type name and the entry in a SQL table. That
URL can have several forms: If it is a simple file name, it is searched
in the same directory as the providers.fac file. If it is a full path, the
root directory is where the service is started. If the URL begins with
the protocol obj:, its root directory is the package of the calling
service. If the URL starts with the protocol res:, the root directory is
the CLASSPATH. A "file:" protocol can also be used. (Optional).

All except the
Proxy WFS
provider

MAXFEATURECOUNT This is the maximum number of features that can be returned by the
WFS on one call. If maxfeaturecount=20, no more then 20 features
will be returned at once. This is a way to protect the user from
getting one million unwanted results on a wrong query or to protect
the content of the databases by allowing a maximum 20 result in
output.

All

MAXOPEN The maximum number of connections that the pool will accept to
open to the database at any one time. When this maximum is
reached, the incoming connections are queued. Warning: if this
maximum is not indicated, there is no maximum value. This means
that the database system can be overloaded by too many
connections. If the system is not really big, set the
maxopen.<PARAM NAME="maxopen" VALUE="60" />

Database

MODE For Shapefiles, this parameter defines the geometry type computing
mode. Values can be "safe" (allow mixing geometries), "normal"
(based on file header) or "computed" (loop on whole file).

Shapefile
provider

MULTIPATH
(PARAMBLOCK)

For Shapefiles, this block holds a set of 1 or more PATH parameters,
each giving the location of a set of files.

Shapefile
provider

NOPOSTGIS If set to true and the PostgreSQL source is PostGIS-enabled, it uses
the classical PostgreSQL data types (point, path, polygon) instead
of the OGC-compliant ones (GEOMETRY, MULTIPOINT, ...).

PostgreSQL/P
ostGIS
provider

Table 35: Parameters Applying to Vector Data Providers (Continued)

338 Detailed Parameters of a Provider

OVERRIDECONNECT This parameter allows you to set a connection string using a
system-dependent syntax, compared to the "CONNECT" parameter
using a conventional and convenient URL. When using that
parameter, the usual CONNECT property only needs to be set for
the USER and PASSWORD attributes. The others can be ignored or
set to a fake value.

Among others, the OVERRIDECONNECT parameter allows you to
set a connection string to a load balancing system. On Oracle, it can
be:

jdbc:oracle:thin:@(DESCRIPTION= (LOAD_BALANCE=on)

(ADDRESS=(PROTOCOL=TCP)(HOST=clusnode-
1vip)(PORT=1521))

(ADDRESS=(PROTOCOL=TCP)(HOST=clusnode-
2vip)(PORT=1521))

(CONNECT_DATA=(SERVICE_NAME=myservice)))

Database

PATH For Shapefiles, their location is given as a path. Shapefile
provider

POOLSIZE The number of connections to pool per user. The WFS framework
contains a JDBC connection pool, so that several connections can
live simultaneously. By default, the size of that pool is 10. A negative
value means no pooling. Keeping some connections pooled allows
to optimize the request time by limiting the number of connection
open/close actions.

Database

TYPES The URL of the types resource document (the list of all used types).
Same kind of URL as for the "MAPPING" tag. The document will
contain the definition of the feature types to publish. Note: If the
"mapping" tag is absent, the "types" document is expected to
contain the mapping information.

All except the
Proxy WFS
provider

USEPOSTGIS ERDAS WFS tries to detect automatically if Postgis is installed by
performing the following query: select postgis_version() from
geometry_columns and checking that the result contains at least 1
row. If the result contains no row, the wfs uses postgres queries.
However, it is possible to force the usage of PostGIS queries by
setting this parameter to true: <PARAM NAME="usepostgis"
VALUE="TRUE" />

PostgreSQL/P
ostGIS
provider

Table 35: Parameters Applying to Vector Data Providers (Continued)

Detailed Parameters of a Provider 339

Parameters for the
Coverage
Framework

The third column in the table below mentions the types of providers to
which the parameter applies. Some of them are grouped into sets which
are:

• Multiple: the providers managing a set of granules, either seamless
or explicit: it includes MultiSimple, Indexed and Hierarchical
providers.

• All: all providers in the wcs framework

Table 36: Parameters Applying to Coverage Providers

NAME Detailed Meaning Applicable
Providers

ALLOWSEARCH Allows a search for the first file able to be decoded if
the path is a directory.

Single
Coverage

BACKGROUNDVALUE It contains the value by band that represents the
absence of data. By analogy, for images it is the
background value that will be set as transparent. The
value can be either a comma-separated list of
values, one per band, or a single value which will
apply to all bands.

All except
Pyramid
provider

CONNECT The connect string describing the general URL to
connect to a raster DBMS source. It must have the
structure of the generalized data source URL:
protocol://host:port/p1+v1/p2+v2, e.g.,
oracle://erdas/sid+erdas/user+dummy/password+du
mmy . However, for some types of providers, the
string can differ slightly. Please refer to Provider
Types for a detailed description of the connection
strings. See also "defaultRowPrefetch" description
below (1).

All except
Pyramid
provider

COVERAGEOFFERING
(PARAMBLOCK)

Encapsulates a set of PARAMBLOCK, one per
Coverage Offering for which additional information is
defined

0..1

DecoderName (PARAMBLOCK)
1..n

For each decoder block, a set of PARAM elements:
one or more of: NAME, TITLE, ABSTRACT,
KEYWORDS.

All except Pyramid provider

340 Detailed Parameters of a Provider

DATASTATISTICS Specify some of the coverage metadata to improve
performance of portrayal when the Normalize filter is
used. A comma-separated list of four values: nb
bands, data type (1 for unsigned short), min value,
max value. Sample entry: <PARAM
NAME="DataStatistics" VALUE="7,1,-100,16000"/>

All

DISABLED_CAPABILITIES The comma-separated list of information to NOT
include in the capabilities document. One or more of
ScaleHint, Resolution.

All

EXPOSURE SHOW_ALL: show all coverage offerings in the
Capabilities document SHOW_AGGREGATES:
show only aggregates nodes (non-terminal coverage
offerings), this has a meaning only with Hierarchichal
providers (use only with Image Archive)
SHOW_NOTHING: Do not show any coverage
offerings in the Capabilities document Default value
is SHOW_ALL

Multiple,
Image Archive

GDALPATH The value is the path to the directory where the
"gdal_tool" executable lies. In ERDAS APOLLO
distribution, the tool is located in
<APOLLO_HOME>/tools/native/gdal.

All except
Pyramid
provider

HEGPATH The path to the HEG tool installation directory. See
Provider Types for more detail.

All except
Pyramid
provider

INDEXINGSERVER The name of the provider, inside the providers.fac
referenced in the INDEXINGPROVIDER parameter,
that constitutes the indexing system. If
INDEXINGTYPE is "GML", this properly holds the
filtering ID given to the tiles in the indexing system.

Multiple,
Image Archive

INDEXINGPROVIDER The URL to the providers.fac file holding the
definition of the indexing system, or to the GML file
(if INDEXINGTYPE is set to "GML").

Multiple,
Image Archive

INDEXINGTYPE The indexing system can be either a OGC-WFS
compliant Feature Server, a OGC CS-W compliant
catalog or a GML file. The value "CATALOG" is
needed to index in a Catalog. "WFS" is the default.

Multiple

ISAUTHORIZATIONEXCEPTION
CRITICAL

Set it to true if an authorization exception (such as a
request for an image at a forbidden scale) is
considered critical. If set to false, the image will
simply not appear; if set to true, an exception will be
thrown.

Simple
Coverage,
Multiple,
Image Archive

MAXCACHE The maximum number of external process (GDAL or
HEG) results that can be cached to answer
subsequent GetCoverage or GetMap requests. If not
specified, the caching is disabled.

All except
Pyramid
provider

Table 36: Parameters Applying to Coverage Providers (Continued)

Detailed Parameters of a Provider 341

MAXSTITCH Defines the maximum number of Coverage granules
to concatenate in the requested output. It is intended
to prevent long output time for small scale requests.
Default value:25. -1 means no limit. Only applies to
WCS Index Providers.

All except
Pyramid
provider

MODE NORMAL: value used with small test data pools, the
resulting behaviour is that a WCS and WMS
GetCapabilities on the service will show the
CoverageOfferings defined at the service startup.
The service has to be restarted to show newly
indexed CoverageOfferings. DYNAMIC: value used
with dynamic data pools, the resulting behaviour is
that the WCS and WMS GetCapabilities on the
service will show the CoverageOfferings enven if
they have been indexed after the service start.
Default value is NORMAL

Multiple,
Image Archive

NODEEXCLUSION Defines the way a disabled aggregate behaves. The
allowed values are "recursive" (the default) or
"single". The "recursive" value means: if an
aggregate is WMS/WCS disabled, it and its subtree
will not appear in the WMS/WCS capabilities and will
not be available for
GetMap/GetCoverage/DescribeCoverage requests.
The "single" value means: if an aggregate is
WMS/WCS disabled, it will not appear in the
WMS/WCS capabilities and will not be available for
GetMap/GetCoverage/DescribeCoverage requests
WHILE its subtree remains visible and available. It
means that the subtree will be attached/linked to the
parent of the disabled aggregate. The disabled
aggregate will not appear in capabilities document,
and so its subtree will be attached to the parent of
the disabled aggregate.

Image Archive
only

PATH For data that are flat files, their location is given as a
path.

All except
Pyramid
provider

PORTRAYALMODE Rendering policy applied when requesting maps on
an aggregate. Possible values are:

• standard - to get the existing behaviour (default)

• style - to render an aggregate as a whole only if
a style or a pyramid is defined. It is not rendered
as a whole if the children are homogeneous.

• deep - the aggregate is never rendered as a
whole. each child is rendered separately.

Image Archive

Table 36: Parameters Applying to Coverage Providers (Continued)

342 Detailed Parameters of a Provider

QUALITY (PARAMBLOCK) This parameter allows to fix the quality of the image
output by a GetMap request.

<PARAMBLOCK NAME="quality" >
<PARAM NAME="PNG" VALUE="30" />
<PARAM NAME="JPEG" VALUE="10" />
</PARAMBLOCK>

• PNG - this parameter determines whether output
is an 8-bits or 24-bits image. The value ranges
from 0 to 100. Less than 50 means 8-bits. The
default is 70.

• JPEG - this parameter determines the level of
quality for JPEG output. The value ranges from 0
to 100, 0 being the maximum compression.
Default is 75.

• All

QUERYABLES path to the queryables.xml file. This file defines the
additionnal custom queryables (search criteria)
defined for this Image Archive provider.

Image Archive
only

SORT_LAYERS Requires the sorting of the layers by their name in
the capabilities output. The default value is true,
except for the PROXY provider.

All except
Pyramid
provider

SRS The SRS ID of the coverages. When also set in the
file header or database, the SRS will be overriden by
the one given in the providers.fac .

All except
Pyramid
provider

TMPPATH As soon as external binaries are used, the temporary
directory given by this parameter is needed to store
its output. Optional. If absent GDALPATH or
HEGPATH is used.

All except
Pyramid
provider

VERYLARGETRIGGER Allow to enforce specific management for large
output sizes, as soon as the output size requested
(pixel width * pixel height) is larger than
VERYLARGETRIGGER*VERYLARGETRIGGER.
Default value: 2500.

All

WMS_REPROJECTION_QUALITY Defines the precision to use when data reprojection
is required when performing WMS requests. The
value is a number between 0 and 100 (default is
100). 100 means the best quality and implies the use
of the standard reprojection engine which reprojects
every pixel. Other values implies the use of a faster
but less precise engine, the quality factor is passed
to that engine.

All

Table 36: Parameters Applying to Coverage Providers (Continued)

Detailed Parameters of a Provider 343

(1) defaultRowPrefetch: This additional parameter of the "connect" string
parameter allows optimizing performance by allowing the framework to
extract data from the data server by blocks of records. The value is the num-
ber of records to fetch together and decrease the traffic. The best gain in per-
formance identified was when the database was not on the same machine as
the Web Service. In this case, the network is a bottleneck and the defaultRow-
Prefetch provides a huge gain.

<PARAM NAME="connect"

VALUE="oracle://myhost:1521/user+boston/password+boston/SID+BOS
TON/defaultRowPrefetch+1000/"
 />

WCS_REPROJECTION_QUALITY Defines the precision to use when data reprojection
is required when performing WCS requests. The
value is a number between 0 and 100 (default is
100). 100 means the best quality and implies the use
of the standard reprojection engine which reprojects
the whole coverage. Other values implies the use of
a faster but less precise engine, the quality factor is
passed to that engine.

All

anonymous (PARAMBLOCK) Defines the pyramid. One PARAMBLOCK of this
type per pyramid level.

1..n

• MINSCALE - minimum scale at which that
provider will be called. The default value is 0.

• MAXSCALE - maximum scale at which that
provider will be called. The default value is
Double.MAX_VALUE.

• ID - name of the provider to proxy.

• MASTER - Must be set to either "true" or "false".
"True" signifies that the provider will export the
capabilities information (service name, title and
abstract, supported requests, layer list,
supported SRSes) to the pyramid. The default
value is "false". It is highly recommended to have
only one proxied provider labelled "master". If
more than one proxied provider is set as the
"master", the one that covers the lowest scale will
be used.

• Pyramid provider

Table 36: Parameters Applying to Coverage Providers (Continued)

344 Provider Types

Provider Types
This appendix presents the detail of the configuration of each type of
connector:

• Connector Name to use for specific types of data sources

• Specific configuration for each type of connector

• What is supported

Connectors In this section, the types of connectors that are contained or are options
of the product are described. There are three types of connectors. The
first, behind the "vector" servlet, is managing vector data sources. The
second, behind the "map" servlet, is handling raster data. The third is
behind the "coverage" servlet and manages coverages. The table
below shows each type of connector, the name of the connector and the
servlet to which it belongs.

The descriptions in this chapter are for information purposes only
and makes no assumption on user rights. Additional licenses may
be required to use the optional connectors.

Table 37: Types of Connectors

Connectors Name of the Connector Servlet
name

Oracle 9i,10g,11g with JDBC thin
driver

com.ionicsoft.wfs.provider.oracle.OracleProvider wfs

Oracle 9i,10g,11g with JDBC OCI
driver

com.ionicsoft.wfs.provider.oracle.OracleOCIProvider wfs

ESRI Shapefile and DBF files com.ionicsoft.wfs.provider.shapev2.ShapeProvider wfs

PostgreSQL Server (v 7.2.x to
8.3.x) + PostGIS (v 0.8.2 to 1.2.0)

com.ionicsoft.wfs.provider.postgresql.PostgreSQLProvider wfs

DBF files com.ionicsoft.wfs.provider.access.DBFProvider wfs

Microsoft Access data com.ionicsoft.wfs.provider.access.AccessProvider wfs

Any other ODBC data source com.ionicsoft.wfs.provider.access.OdbcProvider wfs

GML 2.1.2, GML 3.1 com.ionicsoft.wfs.provider.gml.GMLProvider and
GMLTransProvider

wfs

Provider Types 345

WFS - or Vector -
Connectors

Before describing the parameters for each of the vector connectors, it
is useful to provide a comparative summary of what each supports. The
table below summarizes the specific connector support.

ArcSDE 8.x,9.x com.ionicsoft.wfs.provider.arcsde82.ArcsdeProvider wfs

Proxy WFS com.ionicsoft.wfs.provider.proxy.ProxyProvider wfs

Simple Framework com.ionicsoft.wfs.provider.simple.SimpleProvider wfs

DGN V7, V8 through FME com.ionicsoft.wfs.provider.fme.FmeProvider wfs

MS SQL Server 2008 com.ionicsoft.wfs.provider.sqlserver.SqlServerProvider wfs

ArcSDE-RASTER 8.x, 9.x with JNI
(deprecated)

com.ionicsoft.wmtmap.provider.sderaster.SdeProvider map

ArcSDE-RASTER 9.x with Java com.ionicsoft.wmtmap.provider.sderaster.SdeProviderJ map

Simple Image com.ionicsoft.wmtmap.provider.image.SimpleProvider map

Image Collection com.ionicsoft.wmtmap.provider.image.IndexProvider
(deprecated)

map

Multiple Images com.ionicsoft.wmtmap.provider.image.MultiSimpleProvider
(deprecated)

map

Proxy WMS com.ionicsoft.wmtmap.provider.proxy.ProxyProvider map

Map Dressing com.ionicsoft.wmtmap.provider.map.MapPresentationProvider map

Pyramid WMS com.ionicsoft.wmtmap.provider.proxy.ScaleProvider map

Portray com.ionicsoft.wmtmap.provider.sld.PortrayProvider map

Context com.ionicsoft.wmtmap.provider.cascading.ContextProvider map

Oracle 10g Georaster com.ionicsoft.wmtmap.provider.oracle.RasterProvider map

Simple Coverage com.ionicsoft.wmtmap.provider.coverage.SimpleProvider coverage

Indexed Coverages com.ionicsoft.wmtmap.provider.coverage.IndexProvider coverage

Multiple Coverages com.ionicsoft.wmtmap.provider.coverage.MultiSimpleProvider coverage

Oracle 10g Georaster WCS com.ionicsoft.wmtmap.provider.coverage.GeoRasterProvider coverage

HDF-EOS Simple Coverages com.ionicsoft.wmtmap.provider.coverage.SimpleHEGProvider
(deprecated)

coverage

HDF-EOS Indexed Coverages com.ionicsoft.wmtmap.provider.coverage.IndexHEGProvider
(deprecated)

coverage

Multiple HDF-EOS Coverages com.ionicsoft.wmtmap.provider.coverage.MultiSimpleHEGProvi
der (deprecated)

coverage

Pyramid WMS/WCS com.ionicsoft.wmtmap.provider.coverage.ScaleProvider coverage

Table 37: Types of Connectors (Continued)

346 Provider Types

Some connectors that are not described in this guide may be
relative to special needs. If any particular connector is required,
please contact ERDAS Support for the extended list of existing or
desired connectors.

Table 38: WFS Providers Implementation Level

WFS
Connec-
tors

Ora-
cle
Thin

Ora-
cle
OCI

Post-
gre
SQL/
Post-
GIS

DBF
and
ODB
C

Sha
pefil
e

MS-
Acces
s

Sim-
ple
Frame
work

ArcS
DE

GML DGN SQL
Server
2008

WFS
types:

-
Transactio
n

X X X X X X

- WFS
Basic

X X X X X X X X X X X

Mapping
types:

- Explicit X X X X X X X X X X X

- SQL X X X X X X X X X X

- Automatic X X X

- AutoGen X X X

- Relational X X

Info in DB:

- SRS X X

- Bounding
Box

X X X X X X

Opera-
tors sup-
ported:

- Geometries1 Basic +
Multi

Basic +
Multi

Basic +
Multi

Point Basic
+ Multi

Point Basic +
Multi

Basic +
Multi

Basic
+ Multi

Basic
+ Multi

Basic +
Multi

http://www.erdas.com/Support

Provider Types 347

Oracle Connector In order to access Oracle databases, the ERDAS WFS goes through
JDBC drivers. ERDAS currently supports the Thin and OCI drivers.
Note that Oracle Spatial is mandatory only when advanced GIS
operations are used in the database. The JDBC must be the Oracle
JDBC driver.

Oracle JDBC Thin Driver As explained in the "Provider Configuration" chapter, add a <CREATE>
element in which the JCLASS attribute must be:
com.ionicsoft.wfs.provider.oracle.OracleProvider in the providers.fac
file.

The "connect" parameter must contain a connection string of the form:

oracle://<host>[:<port>]/user+<username>/password+<password>/SI
D+<oracle_sid>

Where <host>, <port>, <username>, <password> and <oracle_sid> are
information to locate the Oracle server and the schema to connect to it.
Other parameters, such as the mapping and schema files, are common
to all types of providers.

If accessing an Oracle database, use the ojdbc14.jar archive
provided with that version of Oracle, or a later one (like ojdbc5.jar).
The ojdbc14.jar provided with an older Oracle version is likely to
fail.

Oracle JDBC OCI Driver In the providers.fac, add a <CREATE> element in which the JCLASS
attribute must be:

com.ionicsoft.wfs.provider.oracle.OracleOCIProvider

The "connect" parameter must contain a connection string of the form:

oracle://<host>[:<port>]/user+<username>/password+<password>/SI
D+<oracle_sid>

- Spatial
Queries2

Rect +
2nd
+ 3rd
(+Neigh
bor)

Rect +
2nd +
3rd
(+Neigh
bor)

Rect +
2nd
+ 3rd

Rect Rect Rect Rect Rect +
2nd

Rect Rect Rect +
2nd
+ 3rd

1. Basic: Point, LineString, Polygon. Multi: MultiPoint, MultiLineString, MultiPolygon, Polygons with holes.

2. Rect: The BBOX rectangular operators. 2nd: Binary geographic operators = Intersects, Equals, Disjoint, Within,
Overlaps, Crosses, Contains, Touches. 3rd: Tertiary geographic operators = Beyond, DWithin.

Table 38: WFS Providers Implementation Level (Continued)

348 Provider Types

Where <host>, <port>, <username>, <password> and <oracle_sid> are
information that locates the Oracle server as well as the schema to
connect to it. Other parameters, such as the mapping and schema files,
are common to all types of providers.

The Oracle OCI driver is not only composed of a jar or zip file.
Several libraries also need to be installed and the related
environment variables set (PATH on Windows,
LD_LIBRARY_PATH or SHLIB_PATH on Unix).

In the case of an Oracle Spatial database, the value of the first SRS
given in the mapping for a given feature type will be matched with
the SRID given in the USER_SDO_GEOM_METADATA table.

In the case of an Oracle Spatial view, the
USER_SDO_GEOM_METADATA table must be filled for the view.

The whole connection string can be encrypted in order to prevent
password disclosure.

Differences between
Oracle OCI and Thin
Driver

The thin driver is a full Java class4 driver that can run on any platform.
The OCI driver is a native JDBC driver that is specific for each platform.

The thin driver is in Java and in some case, may perform a little slower
than the OCI driver. The OCI Driver, when the installed version matches
the database version, is more scalable, has listeners that use less
memory and may even provide caching mechanism to enhance
performance.

Oracle RAC If you need to be able to support a large number of concurrent users,
you can set up the system so that the load is balanced between several
Oracle servers. You can achieve this by setting up an Oracle Real
Application Cluster (RAC). Oracle maintains the most thorough
directions for setting up and managing an Oracle RAC on their web site:
http://download.oracle.com/docs/cd/B19306_01/rac.102/b14197/to
c.htm

http://download.oracle.com/docs/cd/B19306_01/rac.102/b14197/toc.htm
http://download.oracle.com/docs/cd/B19306_01/rac.102/b14197/toc.htm

Provider Types 349

On the provider side, in order to benefit from the RAC, the usual
database connection string (host, port, sid, user, password) has to be
replaced with a "JDBC Connection String" (the actual parameter is
named "overrideconnect") containing all the connection options
needed. In case of an Oracle cluster of four machines accessed using
the Oracle thin JDBC driver, the string will look like:

Note that a classical Oracle server can also be accessed using a similar
configuration instead of the usual one. For example, for a connection
string set with host=myoraclehost, port=myoracleport,
sid=myoraclesid, user=myuser, password=mypassword, the following
JDBC Connection String is equivalent:.

THE USER AND PASSWORD have to be set in the usual Connection
String property but all the other parameters in that property can be left
blank.

PostgreSQL/PostGIS This provider applies to PostgreSQL data sources (versions 7.2 to 8.3
have been tested) as well as to PostGIS (version 0.8.2 to 1.2.0 have
been tested) along with GEOSS 2.2.3. Depending on the data source
and the geometry types of the spatial data, it must be initialized
differently.

Globally, to set up a PostgreSQL or a PostGIS connector, in the
providers.fac file, add a <CREATE> element in which the JCLASS
attribute must be:
com.ionicsoft.wfs.provider.postgresql.PostgreSQLProvider.

The "connect" parameter must contain a connection string of the form:

postgres://<host>[:<port>]/user+<username>[/password+<password>
]/database+<dbname>

Where <host>, <port>, <username>, <password> and <dbname> are
information to locate the PostgreSQL server and the database to
connect to it. Other parameters, like the mapping and schema files, are
common to all types of providers.

jdbc:oracle:thin:@(DESCRIPTION= (LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=clusnode-1vip)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=clusnode-2vip)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=clusnode-3vip)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=clusnode-4vip)(PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=myhost)))

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS
=(PROTOCOL=TCP)(HOST=myoraclehost)(PORT=myoracleport)))(CONNECT_DATA=(SID=myoracle
sid)))

350 Provider Types

For early PostgreSQL 7.x versions, after installing the server, make
sure that the start script (/etc/init.d/postgresql) mentions the proper
option to accept incoming sockets. If not, edit this file and add this
option to the line "su -l postgres ...": -o "-i" . If not, connection to the
server remotely will not be possible.

For the servlet to successfully connect to the PostgreSQL server,
allow non-local connections. Therefore, "host" entries in the
Postgres pg_hba.conf file, and set tcpip_socket=true in the
postgresql.conf file.

Note that frequent updates, i.e., insert, delete, in PostgreSQL
database end up causing PostgreSQL to return strange and
inconsistent results. It is recommended that the "vacuum"
command be run on the database to clean up the deleted tuples in
the tables and fix inconsistent results. This should be done
following a succesful backup.

The whole connection string can be encrypted in order to prevent
password disclosure.

The key generation option fid="auto" (attribute of the "Primary"
property in the mapping file) is not supported for
PostgreSQL/PostGIS as this DBMS does not support the unique
identifier auto-generation option.

PostgreSQL

If the data source is not PostGIS-enabled, some restrictions apply:

• Queries mentioning the geometric properties are limited mainly to
searches inside a Box: Disjoint, Touches, Crosses, Intersects and
BBOX operators have the "Box" behavior. Overlaps, Contains and
Distance operators are unsupported, as they produce unexpected
results.

• The types of geometries are limited to point, line, polygon.
(Doughnut polygons and multigeometries are not supported)

Provider Types 351

• Index creation: The postgreSQL database supports several index
types except Quad Tree indexes. To create an index on Point
geometries, convert the Point geometry onto a box in the index
expression: CREATE INDEX ON mytable USING RTREE
(box(column)).

If the PostgreSQL database is PostGIS-enabled, inhibit it and use the
classical PostgreSQL geometries (point, path, polygon), by setting the
"NOPOSTGIS" parameter to "TRUE" in the providers.fac file.

PostGIS

After installing PostGIS, enable the database. PostGIS-enabling the
PostgreSQL database is achieved by running a couple of Postgres
commands explained in the PostgreSQL documentation:

• createlang plpgsql <my_database>

• psql -d <my_database> -f postgis.sql

Check that the database is PostGIS-enable by looking for a table
named "geometry_columns".

ERDAS PostgreSQL provider only needs the "POSTGIS" and the
"GEOS" libraries to be installed. The "PROJ" library, used for
coordinate transforms, is not used.

Shapefiles As explained in the "Provider Configuration" chapter, in the
providers.fac file, add a <CREATE> element in which the JCLASS
attribute must be:

com.ionicsoft.wfs.provider.shapev2.ShapeProvider

The "path" and "multipath" parameters give the access path(s) to the
Shape and DBF files. Note that on Unix platforms, all file extensions
must be lowercase.

Other parameters like the mapping and schema files, are common to all
types of providers.

Restrictions and limitations: At this time, the operations allowed on this
type of data source are limited to non-transactional ones and queries on
geometric properties can only search them in a rectangular box.

ArcSDE To set up an ArcSDE connector, use the Administration Console to add
a new service of type "ArcSDE Provider".

352 Provider Types

The "Connection String" parameter must be set to locate the ArcSDE
server: <host>, <port>, <username>, <password> and
<instancename> are information to locate the ArcSDE server and the
database to connect to it. Other parameters, like the mapping and
schema files, are common to all types of providers.

Restrictions:

• Queries mentioning the geometric properties are limited to one
geographic filter per query. The supported operators are: BBOX,
Intersect, Equals, Disjoint, Within, Overlaps, Crosses and Contains.
Beyond, Neighbor and DWithin are not supported because they are
not implemented in the underlying ArcSDE API.

• The types of geometries are limited to point, line, polygon.

Before configuring the service, it is necessary to add the ArcSDE
SDK library to the web app. This library is composed of a small set
of jar files available in the ArcSDE Installation Directory, under the
lib folder. They can be named jsdeXX_sdk.jar, jpeXX_sdk.jar, and
possibly icu4j.jar where XX is the version of ArcSDE.

Copy those jar files into <APOLLO_HOME>/webapps/erdas-
apollo/profiles/eas/WEB-INF/lib (for APOLLO Essentials) or into
<APOLLO_HOME>/webapps/erdas-apollo/profiles/eaim/lib (for
APOLLO Advantage/Professional). Rebuild the erdas-apollo
webapp by running ant from <APOLLO_HOME> as described in
Rebuilding the Webapps and redeploy them into your servlet
engine as described in Deploying WAR Files on Supported
Servlet Engines.

To use some of the command-line tools with ArcSDE, copy those
jar files in the <APOLLO_HOME>/tools/ directory and update the
runfromsqlsde.* scripts accordingly.

The whole connection string can be encrypted in order to prevent
password disclosure.

Tips on how to create ArcSDE geographic tables

Provider Types 353

Reminder: ArcSDE uses the concept of TABLE similar to Oracle as a
storage of classical (i.e. nongeographic) information. As soon as a
geographic dimension is given, by means of one or more geometric
columns it is designated a FEATURE CLASS.

How to Create ArcSDE Geographic Tables Over ArcSDE/Oracle Spatial

Depending on the nature of the data, several methods can be used.

• Shapefile Data: Use the "shp2sde" command available in the
ArcSDE distribution to populate the data. If the geometry is to be
stored as an Oracle Spatial Geometry Type (SDO_GEOMETRY),
make sure that the DBTUNE table contains an entry with
parameter_name="GEOMETRY_STORAGE" and
config_string="SDO_GEOMETRY". If not, the geometry will be
created either as an ArcSDE Binary or as an ArcSDE BLOB. Refer
to ArcSDE Configuration and Tuning Guide for Oracle for more
information.

Example of a shp2sde command

The following command takes the BUSINESS.shp,shx,dbf files
provided in the distribution (under data/erdas-apollo/db/arcsde) and
populates them as an ArcSDE feature class for the user "SDE" using
the "ERDAS" keyword as entry in the DBTUNE table :

shp2sde -o create -l business,geometry -f BUSINESS -a all -G
26986 -e p -u SDE -k ERDAS

• SQL Table Creation Script: Run it first with an Oracle front end like
SQL*Plus. Then "register" the feature class in ArcSDE using the
sdelayer -o register ... command, as in the following example.

Example of an Oracle spatial table registration in ArcSDE

The following commands create the Oracle BUSINESS table and
registers it as a feature class of type "point" in ArcSDE, under the "SDE"
user, using the "BUS_ID" column as primary key managed by the user.
Both scripts are available in the distribution, under data/erdas-
apollo/db/arcsde and in data/erdas-
apollo/db/arcsde/bus_create_sde.txt.

sqlplus sde/sde @bus_create.sql sdelayer -o register -l
business,geometry -u SDE -c bus_id -u SDE -e p -C USER

354 Provider Types

• ArcSDE sdetable -o create ... command: This is, available in the
ArcSDE distribution followed by a sdelayer -o add ... command.
Make sure to have the proper value for the
GEOMETRY_STORAGE parameter in the DBTUNE table to
ensure the geometry is created as an Oracle Spatial
SDO_GEOMETRY. The following example illustrates this method.

Example of creating a feature class directly in ArcSDE

The following commands are taken from the bus_create_sde.txt file
provided in the distribution under data/erdas-apollo/db/arcsde. They
create a table named "BUSINESS", in the "SDE" user and then
converts it into a feature class with "geometry" as geographic column of
type Point.

sdetable -o create -t business -p SDE -u SDE -d "BUS_ID integer,
BUS_NAME string(25),BUS_TYPE string(10),
 STREET_NAM string(17), BUILDING_N string(4), POSTCODE
string(5), CITY string(8), TELEPHONE string(12),
 TOTAL_EMPL double(12,1),LOCK_ID string(255)"
sdelayer -o add -l business,geometry -e p -u SDE -G 26986 -g 500
-p SDE -k ERDAS

• Other tools, like FME and ArcGIS, allow data to be imported into the
ArcSDE database.

How to Create ArcSDE Geographic Tables Over ArcSDE/MS-SQL

Depending on the initial data, several methods can be used to import
them in ArcSDE/MS-SQL.

• Importing Shapefile data into ArcSDE can be easily done using a
shp2sde tool like for ArcSDE/Oracle. The GEOMETRY_STORAGE
default setting (to SDEBINARY) is generally best.

• Use one of the MS-SQL editors to run a SQL script. The distribution
contains the bus_create_mssql.sql and lock_mssql.sql scripts that
match the MS-SQL syntax.

• Create the feature class combining the ArcSDE sdetable and
sdelayer commands like for ArcSDE/Oracle.

ERDAS APOLLO WFS over ArcSDE behaves sometimes differently
when on top of MS-SQL, compared to the Oracle version. Here are
some tips that will assist in troubleshooting and tuning your
configuration.

Provider Types 355

• If the mapping between a feature type attribute and the ArcSDE
column mentions a non-existent column name, the WFS
GetCapabilities and DescribeFeatureType requests will behave
normally. The GetFeature command, however, will return an empty
feature collection. No error message will appear, as ArcSDE Java
API does not report any.

• In the WFS mapping file, if the schema="..." attribute of the <SQL>
element mentions a non-existent SDE user, the result of the
GetFeature request will be an empty collection with no error
message (ArcSDE Java API does not report any). Moreover, make
sure that the user name is in UPPERCASE.

• For the WFS Transactional interfaces to run properly, make sure
that the LOCKTIMEOUT table is created. See the files data/erdas-
apollo/db/oracle/lock.sql, data/erdas-
apollo/db/arcsde/bus_create_sde.txt and data/erdas-
apollo/db/arcsde/lock_mssql.sql for ways of creating this table.

Useful ArcSDE Commands

He is a set of commands commonly used with ArcSDE to set up a WFS.

• To remove a feature class, first remove the layer, then remove the
table:

sdelayer -o delete -l protectedareas,shape -u sde

sdetable -o delete -t protectedareas -u sde

• Before importing a Shapefile into ArcSDE, look at its structure,
using:

shpinfo -o describe -f texas_counties -d both

• To accurately control the visibility of the tables and columns in the
WFS, use the FromSQLGenerator tool for ArcSDE, as provided as
part of the distribution.

DBF Files To set up a DBF connector, add a <CREATE> element int the
providers.fac file in which the JCLASS attribute must be:

com.ionicsoft.wfs.provider.access.DBFProvider

The "connect" parameter must contain a connection string of the form:

DBF:///dir+<path>

356 Provider Types

Where <path> gives the access path to the DBF file. Be aware that this
path must, on Unix, have the form: //<host>/<dir> where <host> can be
empty, and <dir> is a full path, starting and composed of "/" as
separator. On Windows platforms, the path is of the form:
//<host>/<Unit>:<dir> where <host> can be empty, <Unit> is a unit letter
and <dir> is a directory, starting and composed of "\" as separator.

Example on Unix:

DBF:///dir+////export/home/Erdas/ArcIMS/data/london

Example on Windows:

DBF:///dir+C:\ArcIMS\data\london

Other parameters, like the mapping and schema files, are common to
all types of providers.

Restrictions:

• The geometries supported on this data source can only be of "Point"
type, and mapped to a couple of columns, one for the X and one for
the Y. The mapping has to be achieved with a <Geometry> tag, the
"nameSQL" attribute mentioning the column names. Example:
<Geometry name="Geometry"
nameSQL="COORD_X,COORD_Y" />

• The operations allowed are limited to non-transactional ones

• Queries mentioning the geometric properties can only search them
in a rectangular box

Microsoft As soon as the product is installed on a Windows server or workstation,
it is possible to access data sources that are ODBC compliant.

ODBC data source If the database is defined by an ODBC source on the server, it is
possible to manage it by using the JCLASS value of:

com.ionicsoft.wfs.provider.access.OdbcProvider .

The "connect" parameter must contain a connection string of the form:

odbc:///source+<source_name>

Where <source_name> gives the name of the ODBC source defined.

Other parameters, like the mapping and schema files, are common to
all types of providers.

Restrictions:

Provider Types 357

• The geometries supported on this data source can only be of "Point"
type, and mapped to a couple of columns, one for the X and one for
the Y. The mapping has to be achieved with a <Geometry> tag, the
"nameSQL" attribute mentioning the column names. Example:
<Geometry name="Geometry"
nameSQL="COORD_X,COORD_Y" /> . See more complete
example in next section.

• The operations allowed are limited to non-transactional ones

• Queries mentioning the geometric properties can only search them
in a rectangular box

MS-Access If the database is a .mdb file, it is possible to use either the previous
ODBC provider or one specific to MS-Access files. This last one will
provide additional capabilities as it will allow requests containing "LIKE"
clauses which templates are compatible with a Microsoft
implementation.

The JCLASS value of

com.ionicsoft.wfs.provider.access.AccessProvider .

The "connect" parameter must contain a connection string of the form:

odbc:///source+<source_name>

Where <source_name> gives the name of the ODBC source defined.

Other parameters, like the mapping and schema files, are common to
all types of providers.

Restrictions:

• The geometries supported on this data source can only be of "Point"
type, and mapped to a couple of columns, one for the X and one for
the Y. The mapping has to be achieved with a <Geometry> tag, the
"nameSQL" attribute mentioning the column names. Example:
<Geometry name="Geometry"
nameSQL="COORD_X,COORD_Y" />

• The operations allowed are limited to non-transactional ones

• Queries mentioning the geometric properties can only search them
in a rectangular box

Example of a Provider Entry on top of a MS-Access Database

<CREATE ID="ESA_ACCESS"
 JCLASS="com.ionicsoft.wfs.provider.access.AccessProvider">

358 Provider Types

 <PARAM NAME="name" VALUE="ESA_ACCESS"/>
 <PARAM NAME="title" VALUE="ERDAS WFS server over ESA ATSR
Fires"/>
 <PARAM NAME="connect" VALUE="odbc:///source+ESA" />
 <PARAM NAME="types" VALUE="obj:///ESA_ACCESS_types.xml" />
</CREATE>

In the above provider entry, the mapping and schema file are merged
in one file, ESA_ACCESS_types.xml. For the mapping file, as MS-
Access has no geometry data types, a geometry tag as sub-element of
the SQL tag has to be used (see the description in Table 45:Sub-
Elements of the SQL Tag). Here is an example of mapping for the
above example, assuming the columns ESAF_LONG and ESAF_LAT
in your table hold the X and Y coords of the geometry.

Example:The mapping and schema file for a MS-Access provider

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xsd:schema PUBLIC "-//W3C//DTD XMLSCHEMA 19991216//EN"
"" >
<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:wfs="http://www.erdas.com/wfs"
 targetNamespace="http://www.erdas.com/wfs"
 elementFormDefault="qualified" version="0.1">

 <xsd:import namespace="http://www.opengis.net/gml"

schemaLocation="http://www.opengis.net/namespaces/gml/core/feat
ure.xsd" />

 <FeatureType name="FIRE" content="elementOnly"
base="gml:AbstractFeatureType">
 <xsd:element name="DATE" type="xsd:date" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="HOUR" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="NDVI" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="STATION" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="LAT" type="xsd:float" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="LONG" type="xsd:float" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="Geometry" type="gml:PointPropertyType"
minOccurs="0" maxOccurs="1"/>
 </FeatureType>

 <Mapping>
 <SQL name="wfs:FIRE">
 <Table nameSQL="BS_V_ESA_FIRE" />
 <Primary name="ESAF_ID" type="xsd:integer" />
 <Element name="DATE" nameSQL="ESAF_DATE" />
 <Element name="HOUR" nameSQL="ESAF_HOUR" />
 <Element name="NDVI" nameSQL="ESAF_NDVI" />

Provider Types 359

 <Element name="STATION" nameSQL="ESAF_STATION" />
 <Element name="LAT" nameSQL="ESAF_LAT" />
 <Element name="LONG" nameSQL="ESAF_LONG" />
 <Geometry name="Geometry" nameSQL="ESAF_LONG,ESAF_LAT" />
 </SQL>

 <Info name="wfs:FIRE">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180." miny="-" maxx="180."
maxy="90." />
 </Info>
 </Mapping>

</xsd:schema>

360 Provider Types

SQLServer 2008 This connector allows you to create a vector service provider whose
data source is a Microsoft SQL Server 2008 database.

The easiest way to create this type of vector service provider is to use
the service provider creation wizard inside the ERDAS APOLLO Data
Manager, but you can also create it manually by editing the
providers.fac file for vectors. This file is located inside the directory
<APOLLO_HOME>\config\erdas-apollo\providers\vector.

To create an entry for this service provider, you need to add a
<CREATE> element with the value of the JCLASS attribute set to
com.ionicsoft.wfs.provider.sqlserver.SqlServerProvider, and the
CONNECT parameter for the entry must contain a connection string in
the following format:

sqlserver://<host>[:<host>[:<port>]/database+<dbname>/user+<username>/password+<password>

Where the <host>, <port>, <dbname>, <username> and <password>
are the name of the computer where SQL Server is installed, the port
number to communicate with the SQL Server instance, the name of the
database containing the vector data, a user account with permission to
access the database, and the password for that account.

Adding Shapefiles to a Microsoft SQL Server 2008 Database

If you need to add shapefiles to a SQL Server database, you can use
one of the following tools:

• Shape2SQL
Available for free from the SharpGIS website at
http://www.sharpgis.net/page/Shape2SQL.aspx

• FME Workbench
Included with the ERDAS APOLLO Feature Interoperability
add-on.

http://www.sharpgis.net/page/Shape2SQL.aspx

Provider Types 361

GML and GML-T This connector permits the use of the WFS interfaces on top of a GML
document. This document, as it is mentioned by a URL, can be either a
file or the result of a HTTP call.

In the providers.fac <CREATE> element, the JCLASS attribute must
be:

com.ionicsoft.wfs.provider.gml.GMLProvider (or GMLTransProvider to
set up a WFS-T)

The "connect" parameter must contain an URL to the GML document to
parse. In particular, if the document is an XML file located in the same
directory as the providers.fac, this URL will be:

obj:///mygmlfile.xml.

The schema file, given in the "types" parameter, must be the one on
which the GML document validates.

The mapping file must contain at least the following entries:

• A <Mapping> tag with a <SQL> section for each feature type. In that
section, there must be a minimum of a <NoPrimary/> entry. There
can be no <Element> tag. But if there is one or more <Element> tag
defined, it must be valid in the sense that the given feature property
name must be found in the schema file.

• A <Info> tag per feature type, or one for all. If none, the capabilities
document will not declare this feature type. This <Info> tag will
contain at least a <SRS> tag and a <BoundingBox> tag. If not, the
default values will be taken.

Limitations:

• Queries mentioning the geometric properties are limited, mainly to
Bounding Box searches.

• The size of the connected document must be small as each request
implies parsing the whole document.

• The XML Schema file mentioned in the "types" parameter must be
the one that validates the GML document.

• No feature or property name can be changed. The features are
output as they are in the GML document.

• Only the GMLTransProvider supports the Transaction operation
(INSERT, UPDATE, DELETE). Integrity is not guaranteed if
concurrent transactions are sent.

362 Provider Types

DGN This connector allows you to create a vector service provider whose
data source is a DGN V7 or DGN V8 file.

You can create this type of vector service provider using the service
provider creation wizard in the ERDAS APOLLO Data Manager, or you
can create it manually by editing the providers.fac file for vectors.
Either way, you will first need to install the ERDAS APOLLO Feature
Interoperability add-on so that the ERDAS APOLLO system can work
with DGN V7 and DGN V8 files. The instructions for installing the
ERDAS APOLLO Feature Interoperability add-on are available in
Appendix B of the ERDAS APOLLO QuickStart Guide.

To manually create an entry for this type of service provider, you need
to open the providers.fac file located inside the directory
<APOLLO_HOME>\config\erdas-apollo\providers\vector. Add a
<CREATE> element with the value of the JCLASS attribute set to
com.ionicsoft.wfs.provider.fme.FmeProvider.

Inside the <CREATE> element, you need to have the following
parameters:

The TYPES and MAPPING parameters can be set to GML schema and
mapping files for more flexible settings. They can be automatically
produced with the "Generate Types and Mapping" query in the Data
Manager. They can also be produced manually from the
"runfromsqlfme.bat" script available in tools/ows.

The FORMAT parameter has to be set to "IGDS" for V7 and V8 DGN
files.

The Directives parameters defined by FME can be overridden. Note
that the OEM_LICENSE_ID and OEM_KEY directives are preset to the
same values as ERDAS IMAGINE, according to the license terms. They
can be changed by explicitly setting the following parameters:
<PARAM NAME="OEM_LICENSE_ID" VALUE="my_license_id" />
<PARAM NAME="OEM_KEY" VALUE="my_oem_key" />

Limitations

• The ERDAS APOLLO Feature Interoperability add-on is currently
only available for Windows machines.

• The FME/DGN connector only supports DGN V7 and V8.

<PARAM NAME="FORMAT" VALUE="IGDS"/>
<PARAM NAME="TYPES" VALUE="defaultsql3:4326"/>
<PARAM NAME="METAURL" VALUE="inherit"/>
<PARAM NAME="OWSINFOURL" VALUE="./wfs_md.xml"/>
<PARAM NAME="CONNECT" VALUE="C:\\Erdas\Data\fme_dgn\43j1.dgn"/>

Provider Types 363

• The ERDAS APOLLO Feature Interoperability add on is completely
separate and different from ERDAS IMAGINE Feature
Interoperability.

Technical Details

• The portrayal of DGN data is predefined in a jar file, for the
"fme-type" base data type. It can be overridden just like the other
data types.

• The "Generate Types and Mapping" task of the Data Manager can
also be run from the command-line by calling the appropriate
FromSqlGenerator tool (like the existing ones defined in
<APOLLO_HOME>/tools/ows). The appropriate script is named
runfromsqlfme.bat . To run it successfully, you need to use at least
the -connection and -table parameters.

For example:
runfromsqlfme -connection C:/Erdas/Data/MyDgnFile.dgn -table %

• Portrayal of symbology: the default FME Directive on styling
symbology results in the symbols to be expanded as geometries
(polygons,...) associated to the features. Changing the directive
value in the providers.fac file will lead to the symbol being converted
as a Point geometry associated to the feature.

• The feature types are built based on the DGN class numbers with
the semantic: FT<classnr>. It can be changed in the mapping file.

• Some feature types correspond to decoration in the map: frame,
title,... They can be ignored.

• The texts and lines default styling is using the portrayal directives
found in the DGN file. For an alternate styling, additional styles can
be created the same way as the other service types.

364 Provider Types

Proxy WFS This connector applies to feature servers that are already OGC-WFS
compliant.

Its goal is to acts as a Proxy to prevent the user from directly accessing
the given feature server. This may be done either because it is in an
Intranet or because the client, an applet for example, is not allowed to
connect to any server other than instance of ERDAS APOLLO one. This
proxy role can also be extended to allow security negotiation with the
underlying service when secured. It is achieved using the "USER" and
"PASSWORD" parameters. ERDAS APOLLO currently supports both
BASIC and DIGEST authentication mechanisms.

Example of a Proxy WFS Entry

<CREATE ID="PROXY"
JCLASS="com.ionicsoft.wfs.provider.proxy.ProxyProvider" >
 <PARAM NAME="title" VALUE="ProxyProvider on WFS"/>
 <PARAM NAME="abstract" VALUE="ProxyProvider"/>
 <PARAM NAME="keywords" VALUE="Proxy" />
 <PARAM NAME="connect"
VALUE="http://webservices.ionicsoft.com/worldData/wfs/WORLDWIDE
" />
 <PARAMBLOCK NAME="contact">
 <PARAM NAME="Organization" VALUE="ERDAS, Inc."/>
 <PARAM NAME="AddressType" VALUE="Postal"/>
 <PARAM NAME="AddressBody" VALUE="5051 Peachtree Corners
Circle"/>
 <PARAM NAME="City" VALUE="Norcross"/>
 <PARAM NAME="PostCode" VALUE="30092-2500"/>
 <PARAM NAME="State" VALUE="GA"/>
 <PARAM NAME="Country" VALUE="USA"/>
 <PARAM NAME="Person" VALUE="Luc Donea"/>
 <PARAM NAME="Position" VALUE="Product Manager"/>
 <PARAM NAME="Voice" VALUE="+1 770 776 3400"/>
 <PARAM NAME="Fax" VALUE="+1 770 776 3500"/>
 <PARAM NAME="Email" VALUE="info@erdas.com"/>
 <PARAM NAME="OnlineResource" VALUE="http://www.erdas.com"/>
 </PARAMBLOCK>
</CREATE>

Simple Framework The Simple Framework is a toolkit for accessing flat files (or other data
sources) through a JDBC driver. It provides a framework for connecting
custom data sources. Its configuration is described in this section. See
the Developer Guide for documentation on how to develop on top of this
API.

Provider Types 365

Introduction

The Simple Framework is a toolkit for accessing flat files through a
JDBC driver. It provides a framework for connecting your own vector
data sources. This section targets the users of the JDBC interface or the
WFS framework. For connecting new kind of vector data sources or file
formats please refer to the Developer Guide.

SQL Support

Case sensitivity:

The Oracle convention has been adopted for schema objects (table,
column, schema, function and procedure names). In a SQL statement,
you represent the name of an object with a quoted identifier or a
nonquoted identifier.

• A quoted identifier begins and ends with double quotation marks (").
If you name a schema object using a quoted identifier, then you
must use the double quotation marks whenever you refer to that
object.

• A nonquoted identifier is not surrounded by any punctuation.

Nonquoted identifiers are not case sensitive. They are interpreted as
uppercase. Quoted identifiers are case sensitive. By enclosing names
in double quotation marks, you can give the following names to different
objects in the same namespace:

employees
"employees"
"Employees"
"EMPLOYEES"

Note the following names are interpreted the same, so they cannot be
used for different objects in the same namespace:

employees
EMPLOYEES
"EMPLOYEES"

The SYS Module

This modules contains the TAB and DUAL tables, and the
LOAD_MODULE and a sample UPPER functions.

366 Provider Types

The TAB Table

This table contains all the tables of the current schema.

Example: Select all the tables of the current schema

select * from TAB

The DUAL Table

The DUAL table is the dummy table, for generic requests.

Example: Select an expression

select UPPER('lower') || ' is upper case' from DUAL

The LOAD_MODULE Function

The LOAD_MODULE function allows to load a new module.

The UPPER Function

The UPPER function returns the uppercase version of a given String

Table 39: The LOAD_MODULE Function

Parameters of the "call" com-
mand

Type Description

LOAD_MODULE void

SCHEMA java.lang.String The schema in which the module must be
loaded

CLASS_NAME java.lang.String The qualified class name of the module to be
loaded

Table 40: The UPPER Function

Parameters of the function call Type Description

UPPER java.lang.String

STRING java.lang.String The String to be uppered

Provider Types 367

The SPATIAL Module

This module provides a BBOX operator, for spatial extents
management.

The BBOX operator allows to make a spatial selection based on a
bounding box.

Example: Filter on a bounding box

select * from CITIES where SPATIAL.BBOX(GEOMETRY, 5, 50, 6, 51,
'EPSG:4326')

The CSV Module

The LOAD_FILE function allows to load a CSV file.

Table 41: The LOAD_MODULE Function

Parameters of the function call Type Description

BBOX java.lang.Boolean

GEOMETRY java.lang.Double A geometry column

XMIN java.lang.Double Lowest X coordinate

YMIN java.lang.Double Lowest Y coordinate

XMAX java.lang.Double Highest X coordinate

YMAX java.lang.Double Highest Y coordinate

SRSNAME java.lang.String SRS Name

Table 42: The LOAD_FILE Function

Parameters of the "call" com-
mand

Type Description

LOAD_FILE void

SCHEMA java.lang.String The schema the CSV file must be loaded into

FILE_NAME java.lang.String The CSV file path

COLUMN_NAMES java.lang.String Comma-separated list of column names
(surrounded by quotes)

368 Provider Types

We could imagine to have a LOAD_DIR function that loads the CSV
files found in a directory.

Using the Simple Framework

In the WFS providers.fac, a small set of parameters is mandatory for a
Simple Framework provider to start: connect, types and initscript.

The connect parameter:

This parameter contains the JDBC connection string. The protocol must
be param and the host must be localhost. A "driverclass" attribute
must be set to com.ionicsoft.wfs.jdbc.geojdbc.jdbc.GeoDriver. A
"database" attribute will set the initial schema of the session.

The types parameter:

This parameter references a file that will hold the XML schema and the
mapping. But you can also set the value "defaultsql", to allow the
framework to build all the feature types information on the basis of the
JDBC metadata.

The initscript parameter:

It references the method to invoke for loading a given data source. Its
content is mainly a set of calls to the "call" function, the arguments
varying depending on the driver to use. Note that you can configure this
parameter with more than one "call", in order to present data from
heterogeneous datasources into a single WFS.

In the ERDAS APOLLO distribution, the following modules and the
corresponding callable invokers are available:

• CSV (Comma Separated Value File Format): LOAD_FILE (as
described above and source provided in the docs directory of the
distribution)

COLUMN_TYPES java.lang.String Comma-separated list of column types
(surrounded by quotes)

SRSNAME java.lang.String The SRS Name for the extent coordinates

XMIN java.lang.Double Abscisse of the lower left corner of the extent

YMIN java.lang.Double Ordinate of the lower left corner of the extent

XMAX java.lang.Double Abscisse of the upper right corner of the extent

YMAX java.lang.Double Ordinate of the upper right corner of the extent

Table 42: The LOAD_FILE Function (Continued)

Provider Types 369

• MAPINFO (MapInfo MID/MIF vector exchange format):
LOAD_FILE(String schemaName, String midFileName, String
mifFileName, String tableName, String srs), LOAD_DIR(String
schemaName, String dir, String srs) (sample provider provided in
the WFS providers.fac)

• SHAPE (ESRI Shapefile): LOAD_SHAPE(String schemaName,
String dir, String name, String srs), LOAD_DIR(String
schemaName, String dir, String srs)

• TEXT (simple tab-separated text files): LOAD_FILE(String
schemaName, String tableName, String file, String columnList)

For the sample CSV connector, the object is named "csv", and the
loading method is "load_file", to load an individual file. The parameters
to the method are: the schema, the path to the file, the comma-
separated list of columns names and types, and the extent of the data.
Example: load_file('WORLD', 'c:\data\country.csv', 'name,
population,geom', 'STRING,LONG,GEOMETRY', 'EPSG:4326', -102.0,
10.0, 30.0, 50.60)

Example of a Simple Framework WFS Entry

<CREATE ID="SAMPLE_CSV"
JCLASS="com.ionicsoft.wfs.provider.simple.SimpleProvider" >
 <PARAM NAME="title" VALUE="CSV Countries"/>
 <PARAM NAME="connect"
VALUE="param://localhost/driverclass+com.ionicsoft.wfs.jdbc.geo
jdbc.jdbc.GeoDriver/database+WORLD" />
 <PARAM NAME="types" VALUE="defaultsql" />
 <LSTRING NAME="initscript">
 call
CSV.LOAD_FILE('WORLD','C:\Erdas\ApolloServer\data\csv\country.c
sv','name,population,geom',
 'STRING,LONG,GEOMETRY', 'EPSG:4326', -102.0, 10.0, 30.0,
50.60);
 </LSTRING>
</CREATE>

WMS - or Raster -
Connectors

The first set of raster connectors are applied to the ERDAS Image
Server. Another set of connectors mainly act as "Proxies" to various
map sources Those sources are either remote (Proxy WMS, Portray
Provider) or local (Map Dressing, Pyramid Provider).

Simple Image Appendix "Image Server" section 2 describes in detail all parameters of
this provider.

Image Collection Appendix "Image Server" section 3 describes in detail all parameters of
this provider.

370 Provider Types

Multiple Images Configuring a set of images consists of configuring each of the
individual images in a single directory and, then, mentioning the
directory in a provider. By doing so, each image will become a Layer in
the server. The layer name is similar to the image name. The difference
is that the "." separating the image name and its extension is replaced
with an underscore (_).

Example of a Multiple Image Provider Entry

<CREATE ID="ATLANTA_IMGLIST"

JCLASS="com.ionicsoft.wmtmap.provider.image.MultiSimpleProvider
">
 <PARAM NAME="SRS" VALUE="EPSG:4269"/>
 <PARAM NAME="PATH"
VALUE="C:/Apollo/ErdasApolloServer/data/erdas-
apollo/images/landsat_imgtiles"/>
 <PARAM NAME="NAME" VALUE="ATLANTA_IMGLIST"/>
 <PARAM NAME="TITLE" VALUE="Landsat List of Images"/>
</CREATE>

Proxy WMS This connector applies to map servers that are already OGC-WMS
compliant. It achieves two goals.

First, it acts as a Proxy to prevent the user from directly accessing the
given map server. This may be done either because it is in an Intranet
or because the client, an applet for example, is not allowed to connect
to any server other than instance of ERDAS APOLLO one. This proxy
role can also be extended to allow security negotiation with the
underlying service when secured. It is achieved using the "USER" and
"PASSWORD" parameters. ERDAS APOLLO currently supports both
BASIC and DIGEST authentication mechanisms.

Secondly, it allows the enhancement of the connected server that could
have some limitations. The enhancements are either automatic (output
format, coordinate transformation,etc.) or explicit (through parameters
like LIMITEDCOLOR, LIMITEDSIZE and LIMITEDTRANSPARENCY).
Note that enhancements can also be restrictions, through the
REMOVE_MAP_FORMAT and REMOVE_INFO_FORMAT, to restrict
the set of output formats permitted.

Example of a Proxy WMS Entry

<CREATE ID="PROXYDEMIS"
 JCLASS="com.ionicsoft.wmtmap.provider.proxy.ProxyProvider">
 <PARAM NAME="TITLE" VALUE="Proxy on DEMIS" />
 <PARAM NAME="ABSTRACT" VALUE="Proxy on DEMIS" />
 <PARAM NAME="URL"
VALUE="http://www2.demis.nl/wms/wms.asp?wms=WorldMap" />
</CREATE>

Provider Types 371

Map Dressing The MapDressing service allows the placement of common map
production elements (north arrow, scale bar, grid, etc). As MapDressing
is a provider in the WMS servlet, configuration information is located in
this appendix.

To configure, enter the connector type, the name of the configuration
file, and provide the path in the root rendering directory that contains the
needed styles.

Example of a Map Dressing Entry

<CREATE ID="MAPDRESSING"

JCLASS="com.ionicsoft.wmtmap.provider.map.MapPresentationProvid
er">
 <PARAM NAME="NAME" VALUE="MAPDRESSING"/>
 <PARAM NAME="TITLE" VALUE="ERDAS APOLLO WMS server for maps
dressing"/>
 <PARAM NAME="ABSTRACT" VALUE="OGC-compliant Map Server
maintained by ERDAS (http://www.erdas.com). It allows you to add
some Map Layout to the produced maps."/>
 <PARAM NAME="LAYERS" VALUE="obj:///mappresentation_layers.xml"
/>
 <PARAM NAME="RULEDIR"
VALUE="D:/Erdas/ApolloServer/config/erdas-apollo/rendering/" />
</CREATE>

The "layers" parameters mention the file containing the configuration:
layer names and titles, style names and titles, dimension names and
defaults.

It is recommended that no change is made to the content of this file
except for cosmetic needs, i.e., title, default value. If more changes are
made to this file other than the recommendations provided above,
ensure that the portrayal styles are still coherent with the changes, and
that the requests still succeed.

Use of this service is described in the "Portrayal Capabilities" chapter.

Pyramid Provider For various reasons, map providers may want to display different data
depending on the scale of the map extent. One reason is for the
accuracy of the data: a satellite image taken at a scale of 1:1000 may
display poorly at a scale of 1:100.000. Conversely, a digital photo taken
at a scale of 1:100.000 will appear as big pixels at a scale of 1:1000 and
could be replaced with another photo taken at a smaller scale. Map
providers may also want to have the option to switch from raster
imagery displayed at large scale to vector data at smaller scales.

The pyramid provider fulfills all of these use cases, but the most
common scenario is to display and configure the same imagery data at
several scales depending on the viewable scale range.

372 Provider Types

A Standard Scale, as defined in the OGC SLD 1.0.0
Implementation Specification, is actually the scale denominator
relative to a "standardized rendering pixel size". The "standardized
rendering pixel size" is defined to be 0.28mm × 0.28mm
(millimeters).

What is the Pyramid Provider?

The pyramid provider connector acts as a proxy provider on top of one
or more providers and chooses between the providers for each request
depending on the requested scale. Therefore, it is necessary to
configure one provider for each different data sources and display
scale, plus the pyramid provider itself.

Pre-Requisites - Set up Providers to be Proxied

Since the pyramid provider proxies providers, each of the providers
need to be already defined in the providers.fac file.

The pyramid provider will inherit the global capabilities information from
one of the proxied providers, named the "master". So, configure at least
one of the proxied providers with meaningful information for the service
name, title and abstract, the supported requests, the layer list, the
supported SRSes.

However, the other proxied provider will also supply information to the
pyramid to let it figure out how to proxy the requests and maybe convert
the outputs, e.g., supported output formats, size and transparency
limitations.

A single major constraint has to be fulfilled by each of the proxied
providers; their layer names must be the same as the master provider's
one. Because each GetMap request to the pyramid mentions one or
more layer names, those names are forwarded to the proxied providers.

Providers Configuration Example

<CREATE ID="BOSTON_LI"
JCLASS="com.ionicsoft.wmtmap.provider.imageProvider.LayerProvid
er" >
 <PARAM VALUE="EPSG:26986" NAME="srs" />
 <PARAM VALUE="C:/Erdas/ApolloServer/data/erdas-apollo/images"
NAME="path" />
 <PARAM VALUE="BOSTON_LI" NAME="name"/>
 <PARAM VALUE="Boston Imagery" NAME="title"/>
</CREATE>

Provider Types 373

<CREATE ID="BOSTON_JPG"
JCLASS="com.ionicsoft.wmtmap.provider.imageProvider.SimpleProvi
der" >
 <PARAM VALUE="EPSG:26986" NAME="srs" />
 <PARAM VALUE="C:/Erdas/ApolloServer/data/erdas-
apollo/images/boston_1/237890.jpg" NAME="path" />
 <PARAM VALUE="BOSTON_LI" NAME="name"/>
 <!-- the name is set to the same as the BOSTON_LI provider, to
allow pyramid -->
 <PARAM VALUE="Boston Image in JPEG" NAME="title"/>
</CREATE>

Pyramid Provider Configuration

Follow the steps outlined below to configure a pyramid provider. As with
all provider configurations, direct editing of the providers.fac file will be
required.

1. Set a unique ID for the pyramid provider in the current providers.fac file.
Like any other WMS provider, the pyramid provider must have an ID
that will be used in subsequent WMS requests.

2. Set the JCLASS attribute of the ID to
"com.ionicsoft.wmtmap.proxy.ScaleProvider".

3. Then, create one <PARAMBLOCK>...</PARAMBLOCK> block for
each provider to proxy.

4. Define the following parameters using the <PARAM> elements for each
<PARAMBLOCK>.

• The "minScale" parameter must be set to a positive number and
correspond to a minimum scale at which that provider will be called.
The default value is 0.

• The "maxScale" parameter must be a positive number and
correspond to the maximum scale at which that provider will be
called. The default value is Double.MAX_VALUE.

• The mandatory "id" parameter must contain the name of the
provider to proxy.

• The "master" parameter must be set to either "true" or "false". "True"
signifies that the provider will export the capabilities information
(service name, title and abstract, supported requests, layer list and
supported SRSes) to the pyramid. The default value is "false".

It is highly recommended to have only one proxied provider labeled
"master". If more than one proxied provider is set as the "master", the
one that covers the lowest scale will be used.

374 Provider Types

5. The list of <PARAMBLOCK> blocks will be automatically sorted by
ascending scale range.

Example:Pyramid Provider Configuration

<CREATE ID="PYRAMID"
JCLASS="com.ionicsoft.wmtmap.provider.proxy.ScaleProvider" >
 <PARAMBLOCK >
 <PARAM NAME="minscale" VALUE="0" />
 <PARAM NAME="maxscale" VALUE="100000" />
 <PARAM NAME="id" VALUE="BOSTON_LI" />
 <PARAM NAME="master" VALUE="true" />
 </PARAMBLOCK>
 <PARAMBLOCK >
 <PARAM NAME="minscale" VALUE="100000" />
 <PARAM NAME="id" VALUE="BOSTON_JPG" />
 </PARAMBLOCK>
</CREATE>

For performance purposes, a configuration of 20 or less proxied
providers per pyramid is recommended.

Usage Tips

• Ensure that each of the proxied providers publishes similar layer
names.

• Ensure the pyramid provider does not contain scale range overlaps
or gaps. To avoid gaps, put similar extreme values. If two providers
have overlapping scales, the one with the smallest "minScale" value
is taken.

If the request corresponds to a scale gap, the master provider will
be called.

• Ensure that only one PARAMBLOCK item has the "master"
parameter set to true. If no master is set, the provider corresponding
to the lowest scale will be used for to provide capabilities
information.

Portray Provider

What is the Portray Provider?

The portrayal provider is a connector that allows a user to obtain maps
from WFSes using SLD as information encoding.

Provider Types 375

This provider is an OGC-compliant WMS because it provides valid
responses to GetCapabilities and GetMap requests.

However, the portray provider does not disclose layer or style
information. Layers and styles are defined in the SLD document that
MUST be passed along to any GetMap request. This also means that
any attempt to send a GetMap request without the associated SLD
document which contains UserLayers and UserStyles elements will
produce an error.

Configuration

Similar to other provider types, an entry in the providers.fac file of the
"map" servlet is needed. Classically, this entry will contain the "ID" of
the provider: a JCLASS specifying the provider type. The entry must be
written as follows:

 ''com.ionicsoft.wmtmap.provider.sld.PortrayProvider".

The following parameters need to be supplied:

• The "name" parameter will appear as Service Name in the
capabilities document.

• The "title" parameter will appear as Service Title in the capabilities
document.

• A "PARAMMAP" element indicates where the portrayal styles and
symbols needed by the provider are located and how they are
managed. This element also has a set of attributes:

- The NAME must be "portrayconfig"
- DIR notes where pre-defined styles and symbols will be found.

It is relevant when "NamedStyles" are queried or when symbol
names are mentioned in "Mark" elements.

- LOADER defines the order of precedence for the various types
of styles. It only applies when Named Styles are used.

- VERSION identifies the portrayal styles syntax version. The
default value is 2.

- MANAGEMENT indicates the engine caching behavior for
previously loaded styles. "Always" implies no caching, "none"
means full caching, and "checked" means that the style
timestamp is checked before re-loading.

The example below demonstrates how a Portray provider is configured.

Example of a Portray WMS Entry

376 Provider Types

<CREATE ID="PORTRAY"
JCLASS="com.ionicsoft.wmtmap.provider.sld.PortrayProvider" >
 <PARAM NAME="name" VALUE="SLD_Portray"/>
 <PARAM NAME="title" VALUE="SLD Portray WMS"/>
 <PARAMMAP NAME="portrayconfig"
 DIR="C:\Erdas\ApolloServer\config\erdas-apollo\rendering"
 LOADER="java,property,sld"
 VERSION="2"
 MANAGEMENT="always" />
</CREATE>

How to Set up Requests to the Portray Provider

Firstly, ensure that all necessary information about the features that will
be portrayed is available. This includes the URL of the WFS, the name
of the feature type(s) and the relevant properties of these feature types.
If only a subset of these features is to be portrayed it will be necessary
to build an OGC-Filter expression that expresses this subset.

Secondly, indicate how each feature type is to be portrayed. If
classifying features with one or more of properties, build as many
portrayal rules as there are classes. If displaying all the features the
same way, possibly with portrayal parameters varying the functions of
one or more feature properties, one rule is sufficient.

Next determine the symbology to be used for each rule. SLD proposes
a set of basic symbolizers such Point, Line, Text, or Polygon. For each,
a different set of parameters must be set including stroke color, fill
pattern, and label size.

Finally, decide the various parameters of the GetMap request. These
parameters include: Box, SRS, width and height, background color, and
transparency.

After accomplishing those steps, build the SLD document. Use the
OGC StyledLayerDescriptor 1.0 Implementation Specification
(available on the OGC website) for additional help. Check which SLD
elements and tags are supported in the provider by referring to the SLD
tags table in the "Portrayal Capabilities" chapter. This chapter also
contains a sample SLD document.

ArcSDE-Raster Provider An increasing number of people are storing raster images and
coverages into ESRI ArcSDE using the "Raster data storage" option.
Starting with ERDAS APOLLO 9.3, there is a way to expose those data
as OGC WMS-compliant maps and very soon, as OGC WCS-compliant
coverages.

This section provides some configuration information to be able to wrap
one or more ArcSDE-Raster layers and expose them in the
Interoperability bus.

http://www.opengeospatial.org/standards/sld

Provider Types 377

The connector has been successfully tested with an ArcSDE 9.0 Java
library connecting to an ArcSDE 9.0 server. Note that the ArcSDE
C/C++ API is no more supported. It means the set up has to use the
"ArcSDE Raster Provider (Java)" and no more the "ArcSDE Raster
Provider (Binary)".

The parameters supported by this provider type are:

• Connection String: the connection string to the ArcSDE server. It is
composed of the ArcSDE server host name or IP address, the
service name must be "esri_sde", the user name and password in
the ArcSDE database. (Mandatory)

• layers: this parameter is a "block" parameter holding the definition
of one or more layers:

Parameters inside the "layers" parameter block:

• Title: the title given to the service. It will appear in the capabilities
document. (Optional)

• Abstract: an abstract describing the service. It will appear in the
capabilities document. (Optional)

• table: the ArcSDE table name, or a pattern using "%" and "?" as
wildcards. See below for details on multi-layer definitions.
(Mandatory)

• pattern: as soon as the "table" parameter contains a wildcard, this
parameter must be made known with the value set to "true".
(Optional)

• column: the name of the column that holds the raster data. It is
needed when more than one column contain raster data. (Optional)

• srs: The coordinate system of the data framing is normally stored in
the ArcSDE table. The esri.txt file included in cots-srs.jar makes the
matching between that ESRI SRS name and the corresponding
EPSG id used by the servlet. But if the ESRI SRS name is not set,
the "srs" parameter can be set in the provider entry to override the
one in the database. (Optional). However, it still implies adding the
corresponding ESRI SRS value in the usersref.xml file (see Other
IDs in SRS Configuration Parameters).

• rgb: defines the bands to associate to the red, green, blue and alpha
channels of the produced image. If not set, it will take bands 1, 2 and
3 for R, G and B. The image will be made opaque. Other possible
values are defined below. Note that for images of less than 3 bands,
the parameter is mandatory as reference to a non-existent band will
produce an error. (Optional)

378 Provider Types

Multi-layer definitions: If there are several ArcSDE raster tables and
several layers are to appear in the service, there are two ways to do it.
The first way is to use a pattern as table value (e.g. "uk_%"), that will
produce one layer per raster table; the layer name will have the table
name. The second way is to explicitly define several layers blocks.

RGB color setting: The "rgb" parameter can take a sequence of 3 or 4
comma-separated numbers, one for each color plus one for the alpha
channel. It can also be set to one of the following pre-defined constants:

• "rgb": it associates the bands 1,2,3 to R,G,B. The image is opaque.

• "rgba": it associates the bands 1,2,3,4 to R,G,B,Alpha.

• "rgbz": it associates the bands 1,2,3 to R,G,B. The alpha channel is
computed using the "Z" convention (alpha = 0 if all bands = 0).

• "bgr": it associates the bands 3,2,1 to R,G,B. The image is opaque.

• "bgrz"it associates the bands 3,2,1 to R,G,B. The alpha channel is
computed.

Context Provider This connector allows an OGC WMS Context to be viewed as a WMS
service accepting GetCapabilities, GetMap and GetFeatureInfo
requests. The context contained in the context file following the OGC
specification can be provided by a variety of sources.

The versions of context files supported are 0.1.3, 0.1.4, 1.0.0, and
1.1.0.

Configuration

In order for this provider to work, insert the proper connector class in the
JCLASS attribute.

The second task is to add a "context" parameter giving the name of the
context file. The location of that file is a URL and the file name is
inserted, its location will be found in the directory of the providers.fac.

<CREATE ID="BOSCON"
JCLASS="com.ionicsoft.wmtmap.provider.cascading.ContextProvider
" >
 <PARAM VALUE="CONTEXT ON BOSTON" NAME="name" />
 <PARAM VALUE="Boston Context Provider over services on ERDAS
public demo site" NAME="title"/>
 <PARAM VALUE="boston_ionic_context.xml" NAME="context" />
</CREATE>

Provider Types 379

As seen in the basic example above, it is also possible to add "name"
and "title" parameters for custom values to appear as Service metadata
in the capabilities document.

The context plugged in the provider cannot contain references to
services located in the same web application. If this is done a
deadlock will be created and the service will hang.

If some of the layers defined in the context file are to be hiddent, or new
layers that are aggregates of layers defined in the context file are to be
defined, input additional optional parameters in the providers
configuration:

• A "cascade" parameter will show the list of layers to expose. It can
contain a comma-separated list of layer names, the "*" sign for all
layers, or an empty string "" for none.

• The layer aggregates are configured in a block parameter named
"aggregates". This block contains a set of sub-blocks, one per
virtual layer to expose. Each of those sub-blocks will itself contain a
set of parameters:

- The "name" attribute of the sub-block is used as the key to the
aggregate layer. The lowercase "name" is used as the layer
name if no "name" parameter is defined in the sub-block.

- An optional "name" parameter can be used as layer name if the
lowercase "name" attribute does not match the deployment
needs.

- The optional "title" parameter will describe the layer in the
capabilities document.

- The optional "abstract" parameter will further describe the layer
in the capabilities document.

- The "layers" parameter will list the set of layers from the context
to address when the current virtual layer is invoked. The rule is
the same as for the "cascade" parameter. If the value is "*", the
layers are ordered as in the context.

- The optional "featureInfoLayers" parameter contains the layer
name on which the GetFeatureInfo request will be forwarded.
Note that the system currently only allows one layer name in
that tag.

- The "legendUrl" tag will allow the addition of a <LegendURL>
tag in the capabilities document for this layer. The syntax is an
URL or file pattern as in the classical LegendURL
configurations. In particular, if the value is an empty string, the
pattern defined in the "TEMPLATE" attribute of the <LEGEND>
tag in the CONFIGURATION section will be used.

380 Provider Types

The example below illustrates this more advanced configuration

<CREATE ID="BOSCON2"
JCLASS="com.ionicsoft.wmtmap.provider.cascading.ContextProvider
" >
 <PARAM VALUE="SECOND CONTEXT ON BOSTON" NAME="name" />
 <PARAM VALUE="Boston Second Context Provider over services on
ERDAS public demo site" NAME="title"/>
 <PARAM VALUE="boston_ionic_context.xml" NAME="context" />
 <PARAM NAME="cascade" VALUE="PLACE_NAMES"/>
 <PARAMBLOCK NAME="aggregates">
 <PARAMBLOCK NAME="BASE_AND_HIGHWAYS">
 <PARAM NAME="name" VALUE="Base_And_HighWays"/>
 <PARAM NAME="title" VALUE="Base + Highways"/>
 <PARAM NAME="layers" VALUE="MASS,HIGHWAYS"/>
 <PARAM NAME="featureInfoLayers" VALUE="HIGHWAYS"/>
 <PARAM NAME="legendUrl" VALUE="{absolute}/{id}-{name}-
default.png"/>
 </PARAMBLOCK>
 <PARAMBLOCK NAME="ALL">
 <PARAM NAME="name" VALUE="ALL"/>
 <PARAM NAME="title" VALUE="Everything"/>
 <PARAM NAME="layers" VALUE="*"/>
 </PARAMBLOCK>
 </PARAMBLOCK>
</CREATE>

Main features

• The context's initial box and scale are used to set the capabilities
BoundingBox.

• The context's SRS is published in the capabilities. If the "MaxScale"
attribute is used for layers in the context document, the GetMap
request will change the visible layers and styles depending on the
scale.

• Each Layer defined in the context will produce a layer in the
capabilities, except if the "cascade" parameter is used to hide some
of them.

• Only the WMS layers and styles mentioned in the contexts file will
appear and be callable in the service. All the others are hidden.

• If the "aggregates" block parameter is used, virtual layers can be
defined.

• Some of the metadata information of the underlying WMS services
can be overridden by information in the context file: BoundingBox,
SRS, service Title and Abstract.

Provider Types 381

• SLD styling found in the context is supported by the service.

• If some setting is done in the providers.fac, such as the title and
abstract, it overrides the information found in the Context.

Access to secure service

If several underlying services are secured, the provider should be
configured to correctly transmit the login credentials to these services.

The simple way is to put the username and password in the service url
(like http://username:password@host/myservice), but that's rarely
acceptable

Otherwise the application server or this provider should be configured
to have access to the credentials definition.

It is also possible to have the authentication context associated to a
request made on the ContextProvider to be propagated to each servers
defined in the context. It is useful to have a kind of single sign on. To do
this, define the parameter forwardAuthentification in the configuration.
The value of that parameter is not used.

 <PARAM NAME="forwardAuthentification" VALUE="true" />

If the application server has not secured this service, you must secure
it to force the application server to transmit the connected user.

<PARAM NAME="security" VALUE="" /> <!-- to accept any user using
a BASIC scheme-->

If no credentials definition is associated to this provider, you must at
least ensure the propagation of the application server ones.

<PARAM NAME="securityresolver" VALUE="container" />

or

<PARAM NAME="securityresolver" VALUE="acceptlogin" />

The last one will automatically reuse the authentication (basic scheme
only) found in the http header as the default login credential.

382 Provider Types

Oracle 10g GeoRaster
Provider

An increasing set of people are storing raster images and coverages
into databases, and the Oracle 10g release includes a "georaster"
module to store imagery and coverages, build pyramids. It comes with
a Java API to load and retrieve those data. In ERDAS APOLLO 9.3, a
connector is provided to expose those data as OGC WMS-compliant
maps and very soon, as OGC WCS-compliant coverages.

This section explains the necessary configuration information to wrap
one or more Oracle GeoRaster layers and expose them in the
Interoperability bus.

It is assumed that the Oracle 10g configuration and data sets are valid.
The connector has been successfully tested with an Oracle 10.1.0.3
server, using the corresponding Georaster Java API. Proper behavior
is not guaranteed with other versions of Oracle and the API. The
connector is currently available in Beta state.

Environment Configuration

In order to connect to an Oracle 10g server, ensure the proper JDBC jar
file is available in the web application. This file is commonly named
ojdbc14.jar and is provided with ERDAS APOLLO.

The Oracle Georaster module does not need any additional library to be
installed.

Provider Setup

The setup consists of adding a new entry in the providers.fac file for the
"map" servlet, defining for this entry a connection string and setting the
Oracle tables to access. A sample provider, named BOSTON_OGEOR,
is contained in the distribution. Uncomment it by removing the leading
"<!--" line and the trailing "-->" line, and change its values to match the
server and data. The sample provider is shown below.

Example of a Oracle GeoRaster Entry

<CREATE ID="BOSTON_OGEOR"
JCLASS="com.ionicsoft.wmtmap.provider.oracle.RasterProvider">
 <PARAM NAME="title" VALUE="ERDAS WMS server over Boston"/>
 <PARAM NAME="abstract" VALUE="WMS over BOSTON imagery in an
Oracle GeoRaster server."/>
 <PARAM NAME="connect"
VALUE="oracle://geo.raster.com/user+myuser/password+mypwd/sid+M
YSID" />
 <PARAM NAME="table" VALUE="BOSTON_GEORASTER" />
 <PARAM NAME="column" VALUE="georaster" />
 <PARAM NAME="id" VALUE="2" />
 <PARAM NAME="rasterdatatable" VALUE="rdt_boston" />
 <PARAM NAME="srs" VALUE="EPSG:26986" />
</CREATE>

Provider Types 383

The parameters supported by this provider type are:

• title: the title given to the service. It will appear in the capabilities
document. (Optional)

• abstract: an abstract describing the service. It will appear in the
capabilities document. (Optional)

• connect: the connection string to the Oracle server. It is composed
of a protocol that must be "oracle", the Oracle server host name or
IP address, the user, password and sid. (Mandatory)

• table: the Oracle table name, or a pattern using "%" and "?" as
wildcards. See below for details on multi-layer definitions.
(Mandatory)

• pattern: as soon as the "table" parameter contains a wildcard, this
parameter has to be given, with the value set to "true". (Optional)

• column: the name of the column that holds the raster data. It is
needed when more than one column contain raster data. (Optional)

• id: the id of the image, the default value is 1. (Optional)

• rasterdatatable: name of the raster data table associated with the
current table. It is needed when more than one raster table is linked
to the current table. (Optional)

• srs: The coordinate system of the data.

• rgb: defines the bands to associate to the red, green, blue and alpha
channels of the produced image. If not set, it will take bands 1, 2 and
3 for R, G and B. The image will be made opaque. Other possible
values are defined below. Note: The parameter is mandatory for
images of less than 3 bands as a reference to a non-existent band
will produce an error. (Optional)

• layers: this parameter is a "block" parameter holding the definition
of one or more layers. See below for details on multi-layer
definitions. (Optional)

Multi-layer definitions: There are two ways to implement the situation
where there are several Oracle Georaster tables and several layers are
to appear in the service. The first way is to use a pattern as table value
(e.g. "uk_%") that produces one layer per raster table with the layer
name having the table name. The second way is to explicitly define
several layers defining a set of <PARAMBLOCK> parameters as in the
example below.

384 Provider Types

Example of a multi-layer Oracle GeoRaster Entry

<CREATE ID="MULTI_OGEOR"
JCLASS="com.ionicsoft.wmtmap.provider.oracle.RasterProvider" >
 <PARAM NAME="title" VALUE="ERDAS WMS server over several
tables"/>
 <PARAM NAME="connect"
VALUE="oracle://geo.raster.com/iuser+myuser/password+mypwd/sid+
MYSID" />
 <PARAMBLOCK NAME="layers">
 <PARAMBLOCK NAME="layer1">
 <PARAM NAME="table" VALUE="BOSTON_TABLE_1" />
 <PARAM NAME="name" VALUE="MyLayer1" />
 <PARAM NAME="title" VALUE="Title of my layer 1"/>
 </PARAMBLOCK>
 <PARAMBLOCK NAME="layerSet2">
 <PARAM NAME="table" VALUE="MASS_%" />
 <PARAM NAME="pattern" VALUE="true" />
 <PARAM NAME="title" VALUE="Massachussets layer"/>
 </PARAMBLOCK>
 </PARAMBLOCK>
</CREATE>

RGB color setting: The "rgb" parameter can take a sequence of 3 or 4
comma-separated numbers, one for each color plus one for the alpha
channel. It can also be set to one of the following pre-defined constants:

• "rgb": it associates the bands 1,2,3 to R,G,B. The image is opaque.

• "rgba": it associates the bands 1,2,3,4 to R,G,B,Alpha.

• "rgbz": it associates the bands 1,2,3 to R,G,B. The alpha channel is
computed using the "Z" convention (alpha = 0 if all bands = 0).

• "bgr": it associates the bands 3,2,1 to R,G,B. The image is opaque.

• "bgrz"it associates the bands 3,2,1 to R,G,B. The alpha channel is
computed.

Limitations

The current implementation of this provider has limitations that will
disappear when the implementation becomes final:

• The provider only supports BIP (band interleave by pixel), not BIL
(band interleave by line) nor BSQ (Band Sequential) images.

• It is recommended to build square tiles (through the blocking size
parameter), so that large scale requests will retrieve a limited set of
tiles.

Provider Types 385

• The ULT (upper left pixel coordinate) must correspond to pixel 0,0.

WCS - or Coverage
- Connectors

If there is a coverage or a set of coverages to publish through a WCS,
they need to be configured in the framework as one of the four types of
WCS connectors: Simple, MultiSimple, Index or Hierarchical. The
following sub-sections explain in detail the configuration tasks needed
for each of those connector types.

The Hierarchical provider is not part of the ERDAS APOLLO
Essentials distribution. It is available in the ERDAS APOLLO
Advantage/Professional product. Please contact ERDAS Support
for more information on this provider.

Basically, these connectors support a set of standard formats (as BIL,
GeoTIFF,...) using our own imagery decoder (ERDAS GIO decoders).
As soon as the "hegpath" parameter is set, the HDF-EOS format is also
supported. If the "gdalpath" parameter is set, the formats referenced in
the GDAL libray and mentionned in the "Using GDAL library" section
below are supported as well. For each format, various color depths and
types of bands are supported.

Every WCS provider is able to serve an ISO19115 metadata file per
coverage offering. These metadata files are automatically generated by
the WCS instance if they don't exist yet. The ISO19115 metadata files
will be available through each Coverage Offering's metadataLink
element in the capabilities document. This process is automatically
enabled if the METADATA parameter block is present in the
configuration part of the providers.fac file, and if a "metaurl" tag is set
for your provider.

<METADATA
 TEMPLATE="{absolute}/{id}/{metaname}.xml"
 DIR="/home/Erdas/ApolloServer/config/erdas-
apollo/metadata/coverage"
/>

Simple Coverage When the coverage data are held in a single file, possibly along with
descriptive files, this connector type is applicable.

In the WCS providers.fac file, the path to the data file and the coordinate
system need to be set. Other parameters such as service name, title
and description, contact information and a set of keywords provide
more information to identify the service.

http://www.erdas.com/Support

386 Provider Types

The following example shows the configuration of a coverage file in the
WCS providers.fac. Note that the connector type is given by the
"JCLASS" attribute which value must be
"com.ionicsoft.wmtmap.provider.coverage.SimpleProvider".

Example of a Simple Coverage Entry

<CREATE ID="ATLANTA_SINGLE"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.SimpleProvider"
>
 <PARAM NAME="name" VALUE="ATLANTA_SINGLE"/>
 <PARAM NAME="title" VALUE="Atlanta Coverage Server"/>
 <PARAM NAME="abstract" VALUE="City of Atlanta ECW Imagery"/>
 <PARAM NAME="keywords" VALUE="Atlanta,Coverage,ECW"/>
 <PARAMBLOCK NAME="contact">
 <PARAM NAME="Organization" VALUE="ERDAS, Inc."/>
 <PARAM NAME="AddressType" VALUE="Postal"/>
 <PARAM NAME="AddressBody" VALUE="5051 Peachtree Corners
Circle"/>
 <PARAM NAME="City" VALUE="Norcross"/>
 <PARAM NAME="PostCode" VALUE="30092-2500"/>
 <PARAM NAME="State" VALUE="GA"/>
 <PARAM NAME="Country" VALUE="USA"/>
 <PARAM NAME="Person" VALUE="Luc Donea"/>
 <PARAM NAME="Position" VALUE="Product Manager"/>
 <PARAM NAME="Voice" VALUE="+1 770 776 3400"/>
 <PARAM NAME="Fax" VALUE="+1 770 776 3500"/>
 <PARAM NAME="Email" VALUE="info@erdas.com"/>
 <PARAM NAME="OnlineResource" VALUE="http://www.erdas.com"/>
 </PARAMBLOCK>
 <PARAMBLOCK NAME="CoverageOffering">
 <PARAMBLOCK NAME="ECW">
 <PARAM NAME="name" VALUE="Atlanta"/>
 <PARAM NAME="title" VALUE="ECW Coverage Offering"/>
 <PARAM NAME="abstract" VALUE="ECW Coverage Offering, Imagery
data"/>
 <PARAM NAME="keywords" VALUE="Atlanta,Imagery,remote-
sensing,Coverage,ECW"/>
 </PARAMBLOCK>
 </PARAMBLOCK>
 <PARAM NAME="path" VALUE="C:/Erdas/ApolloServer/data/erdas-
apollo/coverages/mosaic/atl_tiles_1_1.ecw" />
 <PARAM NAME="srs" VALUE="EPSG:2240" />
</CREATE>

Note that the "CoverageOffering" parameter block allows you to
rename your coverage offerings or just to enrich them with a title,
abstract and keywords. One sub-block can be defined per coverage
offering, each sub-block is named with the original name of each
coverage offering. This functionality works with each type of WCS
provider.

Indexed Coverages In many cases, the data manager has a set of coverage files in a
hierarchy of directories.

Provider Types 387

Moreover, this collection of coverages can be composed of a large
volume of files that justifies the setup of an indexing method. In the
current release, the indexer is Feature Server-based, and the WCS
provider references this Feature source through its providers.fac, and
the WFS provider name. The indexing system WFS can be set up either
on top of a database (oracle or postgres) or on top of a GML file.

in order to set up a set of indexed coverages, follow these steps:

1. Setup a WFS provider that will reference the coverage indexes.
Therefore:

Go to <APOLLO_HOME>/config/erdas-apollo/providers/coverage.

In that directory, edit the indexer.fac file. It contains the definition of
several WFS providers, each relating to a database type (Oracle,
Postgres or GML file) and instance. Duplicate one and change its name
(the ID attribute), its connection string (the "connect" parameter) and its
name (give it the same value as the ID).

If the database does not exist, run the create<DB>.sql script to have the
tables and indexes built in the chosen database. <DB> stands for
"Oracle" or "Postgres".

If using a GML file, start from an existing file. Rename the
"empty_gml_index.gml" and use it to build the indexes. Note that the
provider type must be a Transaction GML provider
(com.ionicsoft.wfs.provider.gml.GMLTransProvider) in order to enable
indexing.

2. Setup a WCS over the coverage data. Therefore:

Edit the providers.fac file. In that file, create a new provider to link to the
data as in the example below. Most of the information is similar to what
must be defined in the case of a simple coverage. The connector type
is given in the "JCLASS" attribute and its value must be
"com.ionicsoft.wmtmap.provider.coverage.IndexProvider".

The "indexingServer" parameter has to reference the WFS provider
name chosen in step 2, and the "indexingProvider" parameter must
reference the indexer.fac file name. The "indexingType" parameter
must be set at the value "WFS"

To prevent large output times, no more than 25 granules will be
extracted for a GetCoverage or GetMap request output. The value
can be changed by setting the "MaxStitch" parameter.

388 Provider Types

3. Populate the index information from the coverages directories into the
WFS. To do so, you can either use the desktop "Indexing System
Viewer" tool or the command-line "runwfsindexer" tool, both part of the
ERDAS APOLLO distribution. See the "tools and viewers" chapter for
instructions on how to index coverages with the Indexing System
Viewer. For easy indexing using the command-line tool, here is the
sequence:

In a console window, go to the <APOLLO_HOME>/tools/ows directory.

In that directory, execute the runwfsindexer tool as explained in the
"Data Indexer" section of the "Tools and Viewers" chapter in order to
load the reference to the coverage files into the WFS. The command
could be:

Example:Sample coverage indexer command

cd /home/Erdas/ApolloServer/tools/ows
runwfsindexer -factory /home/Erdas/ApolloServer/config/erdas-
apollo/providers/coverage/providers.fac
-name MYWCSPROV -command addDir -datapath
/home/ErdasApollo/data/erdas-apollo/coverages/mosaic

The optional 'command' parameter accepts the following values
(default is "addDir"):

• addDir: recursively add a hierarchy of directories. The root directory
is given by the 'data' parameter.

• addFile: add a single file, whose path is defined by the 'data'
parameter.

• deleteFile: delete entries from a single file whose path is given by
the 'data' parameter.

• deleteIndexingSystem: remove all the entries in this indexing
system.

• updateIndexingSystem: update indexing system metadata (should
be used after multiple deleteFile calls).

• deleteCoverage: delete a single coverage offering by name; the
name being given in the 'data' parameter.

Provider Types 389

Note that in the procedure described here above, and if the indexing is
done on top of a GML file, it's not necessary to setup manually a WFS
and reference it in the WCS providers.fac. The only step needed is to
reference directly the GML file in the "indexingProvider" parameter
instead of the corresponding WFS providers.fac file. The
"indexingType" parameter must the be set at the value "GML".

We recommand you to use the ERDAS APOLLO Administration
Console to configure all your providers.

Example of an Indexed Coverage Set Entry

<CREATE ID="ATLANTA_MOSAIC"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.IndexProvider" >
 <PARAM NAME="name" VALUE="ATLANTA_MOSAIC"/>
 <PARAM NAME="title" VALUE="Aerial imagery over Atlanta"/>
 <PARAM NAME="abstract" VALUE="Aerial imagery over City of
Atlanta"/>
 <PARAM NAME="keywords" VALUE="atlanta,imagery,mosaic,aerial"/>
 <PARAMBLOCK NAME="contact">
 <PARAM NAME="Organization" VALUE="ERDAS, Inc."/>
 <PARAM NAME="AddressType" VALUE="Postal"/>
 <PARAM NAME="AddressBody" VALUE="5051 Peachtree Corners
Circle"/>
 <PARAM NAME="City" VALUE="Norcross"/>
 <PARAM NAME="PostCode" VALUE="30092-2500"/>
 <PARAM NAME="State" VALUE="GA"/>
 <PARAM NAME="Country" VALUE="USA"/>
 <PARAM NAME="Person" VALUE="Luc Donea"/>
 <PARAM NAME="Position" VALUE="Product Manager"/>
 <PARAM NAME="Voice" VALUE="+1 770 776 3400"/>
 <PARAM NAME="Fax" VALUE="+1 770 776 3500"/>
 <PARAM NAME="Email" VALUE="info@erdas.com"/>
 <PARAM NAME="OnlineResource" VALUE="http://www.erdas.com"/>
 </PARAMBLOCK>
 <PARAMBLOCK NAME="CoverageOffering">
 <PARAMBLOCK NAME="ECW">
 <PARAM NAME="name" VALUE="Atlanta layer"/>
 <PARAM NAME="title" VALUE="Atlanta Coverage Offering layer"/>
 <PARAM NAME="abstract" VALUE="Atlanta Coverage Offering layer,
Imagery data"/>
 <PARAM NAME="keywords" VALUE="Atlanta, Imagery, remote-
sensing, coverage, ECW"/>
 </PARAMBLOCK>
 </PARAMBLOCK>
 <PARAM NAME="indexingProvider"
VALUE="file:///C:/Erdas/ApolloServer/config/erdas-
apollo/providers/coverage/ATLANTA.gml" />
 <PARAM NAME="indexingServer" VALUE="ATLANTA" />
 <PARAM NAME="srs" VALUE="EPSG:2240" />
</CREATE>

Multi Simple Coverages A set of coverage files, in a hierarchy of directories can be presented as
a homogenous layer of data using the IndexProvider. However, a data
manager might need to present these files as separate data sources.

390 Provider Types

For example, four files can be indexed and served using an
IndexProvider. The user will then see one coverage offering but will not
be able to distinguish from which file comes a data subset.

If these files are served using a MultiSimpleProvider, the user will then
see four coverage offerings each one named with the name of the file
without extension followed by an underscore and the original coverage
name.

A Multi Simple Provider serving n-number of files can be seen as n-
number of Simple Providers.

The configuration of a Multi Simple Provider is the same as the
configuration of an Index Provider, except the JCLASS parameter.

Example of a MultiSimple Coverage Set Entry

<CREATE ID="ATLANTA_LIST"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.MultiSimpleProvi
der" >
 <PARAM NAME="name" VALUE="ATLANTA_MOSAIC"/>
 <PARAM NAME="title" VALUE="Aerial imagery list over Atlanta"/>
 <PARAM NAME="abstract" VALUE="Aerial imagery list over City of
Atlanta"/>
 <PARAM NAME="keywords" VALUE="atlanta,imagery,list,aerial"/>
 <PARAMBLOCK NAME="contact">
 <PARAM NAME="Organization" VALUE="ERDAS, Inc."/>
 <PARAM NAME="AddressType" VALUE="Postal"/>
 <PARAM NAME="AddressBody" VALUE="5051 Peachtree Corners
Circle"/>
 <PARAM NAME="City" VALUE="Norcross"/>
 <PARAM NAME="PostCode" VALUE="30092-2500"/>
 <PARAM NAME="State" VALUE="GA"/>
 <PARAM NAME="Country" VALUE="USA"/>
 <PARAM NAME="Person" VALUE="Luc Donea"/>
 <PARAM NAME="Position" VALUE="Product Manager"/>
 <PARAM NAME="Voice" VALUE="+1 770 776 3400"/>
 <PARAM NAME="Fax" VALUE="+1 770 776 3500"/>
 <PARAM NAME="Email" VALUE="info@erdas.com"/>
 <PARAM NAME="OnlineResource" VALUE="http://www.erdas.com"/>
 </PARAMBLOCK>
 <PARAMBLOCK NAME="CoverageOffering">
 <PARAMBLOCK NAME="TIF">
 <PARAM NAME="name" VALUE="Grid_L2g_2d"/>
 </PARAMBLOCK>
 </PARAMBLOCK>
 <PARAM NAME="indexingProvider" VALUE="indexer.fac" />
 <PARAM NAME="indexingServer" VALUE="GML_COV" />
 <PARAM NAME="srs" VALUE="EPSG:4326" />
</CREATE>

Provider Types 391

The "CoverageOffering" parameter block has a different behavior in the
case of a MultiSimple Provider. As the different Coverage Offerings are,
by default, named using the following pattern: <file name>_<offering
original name> a pattern-matching mechanism is used to rename the
Coverage Offerings. For example:

The offering original name for Geotiff files is TIF. Therefore two files
named file1.tif and file2.tif will be exposed as two coverage offerings
named file1_TIF and file2_TIF. Using the above parameter block, they
will be named file1_Grid_L2g_2d and file2_Grid_L2g_2d.

Hierarchical Coverages When the amount of data becomes larger, better data management is
required. The simplest and best data organisation model remains the
simple hierarchical tree. That is why the WCS hierarchical provider
enables users to expose their data in an hierarchical tree. This is far
more powerful than the list model of the Multi Simple providers.

The hierarchical providers are not available in the ERDAS
APOLLO Essentials product. The hierarchical provider is available
in the ERDAS APOLLO Advantage/Professional product
distribution.

The indexer is registry-object based, and the WCS provider references
the registry through its providers.fac, and the WRS provider name. The
indexing system WRS has to be set up on top of an Oracle database .

The hiercarchical provider is able to:

• manage any type of data in a single instance. It is not unusual to
visualize Hdf-Eos, GeoRaster, Jpeg2000 and Tif data under the
nodes of the same tree.

• manage multiple coordinate systems in a single instance.

• compute dynamically the nodes metadata by aggregation of its
children metadata.

• answer GetCoverage requests on the tree nodes by mosaicing the
node children.

Example of an Hierarchical Coverage Set Entry

<CREATE ID="MODIS_TREE"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.HierarchicalProv
ider" >
 <PARAM NAME="name" VALUE="MODIS_TREE"/>
 <PARAM NAME="title" VALUE="hierarchical WCS"/>
 <PARAM NAME="abstract" VALUE="MODIS Data"/>
 <PARAM NAME="metaurl" VALUE="" />

392 Provider Types

 <PARAM NAME="keywords" VALUE="Nasa,Terra,MODIS,MOD09GHK,Image
Archive"/>
 <PARAM NAME="backgroundValue" VALUE="-1000" />
 <PARAM NAME="srs" VALUE="EPSG:4326" />
 <PARAM NAME="mode" VALUE="dynamic" />
 <PARAM NAME="maxcache" VALUE="250" />
 <PARAM NAME="maxStitch" VALUE="500" />
 <PARAM NAME="gdalpath" VALUE="D:\resin-219\webapps\wcs\WEB-
INF\resource\GDAL\"/>
 <PARAM NAME="hegpath" VALUE="D:\resin-219\webapps\wcs\WEB-
INF\resource\heg3\bin\" />
 <PARAM NAME="tmppath" VALUE="D:\resin-219\webapps\wcs\WEB-
INF\resource\temp\" />
 <PARAM NAME="indexingProvider"
VALUE="..\..\..\wrs\servlet\resource\providers.fac" />
 <PARAM NAME="indexingServer" VALUE="WRSORA" />
 <PARAM NAME="indexingType" VALUE="CATALOG" />
 <PARAMBLOCK NAME="contact">
 <PARAM NAME="Organization" VALUE="ERDAS, Inc."/>
 <PARAM NAME="AddressType" VALUE="Postal"/>
 <PARAM NAME="AddressBody" VALUE="5051 Peachtree Corners
Circle"/>
 <PARAM NAME="City" VALUE="Norcross"/>
 <PARAM NAME="PostCode" VALUE="30092-2500"/>
 <PARAM NAME="State" VALUE="GA"/>
 <PARAM NAME="Country" VALUE="USA"/>
 <PARAM NAME="Person" VALUE="Luc Donea"/>
 <PARAM NAME="Position" VALUE="Product Manager"/>
 <PARAM NAME="Voice" VALUE="+1 770 776 3400"/>
 <PARAM NAME="Fax" VALUE="+1 770 776 3500"/>
 <PARAM NAME="Email" VALUE="info@erdas.com"/>
 <PARAM NAME="OnlineResource" VALUE="http://www.erdas.com"/>
 </PARAMBLOCK>
</CREATE>

Oracle 10g GeoRaster
Coverages

Oracle GeoRaster coverages can be served in various ways,
depending on whether access to individual rows is expected or not. The
following sections describe those different solutions.

The WCS Oracle GeoRaster Provider

The WCS GeoRaster provider
(JCLASS=com.ionicsoft.wmtmap.coverage.GetRasterProvider) is very
similar to the WMS RasterProvider. Except the JCLASS attribute, all the
other parameters are the same.

Example of an Oracle GeoRaster WCS

<CREATE ID="TESTOGEOR"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.GeoRasterProvide
r">
 <PARAM NAME="TITLE" VALUE="GeoRaster Simple WCS"/>
 <PARAMBLOCK NAME="LAYERS">
 <PARAMBLOCK NAME="0">
 <PARAM NAME="table" VALUE="DMTEST3"/>

Provider Types 393

 <PARAM NAME="SRS" VALUE="EPSG:26986"/>
 <PARAM NAME="column" VALUE="GEORASTER"/>
 <PARAM NAME="rasterdatatable" VALUE="RASTERTABLE3"/>
 <PARAM NAME="id" VALUE="2"/>
 <PARAM NAME="TITLE" VALUE="Layer0Title"/>
 <PARAM NAME="ABSTRACT" VALUE="Layer0Abstract"/>
 <PARAM NAME="NAME" VALUE="RASTER3_2"/>
 </PARAMBLOCK>
 <PARAMBLOCK NAME="1">
 <PARAM NAME="table" VALUE="DMTEST4"/>
 <PARAM NAME="SRS" VALUE="EPSG:26986"/>
 <PARAM NAME="column" VALUE="GEORASTER"/>
 <PARAM NAME="rasterdatatable" VALUE="RASTERTABLE4"/>
 <PARAM NAME="id" VALUE="1"/>
 <PARAM NAME="TITLE" VALUE="Layer1Title"/>
 <PARAM NAME="ABSTRACT" VALUE="Layer1Abstract"/>
 <PARAM NAME="NAME" VALUE="RASTER4_1"/>
 </PARAMBLOCK>
 </PARAMBLOCK>
 <PARAM NAME="ABSTRACT" VALUE="My Georaster WCS Test"/>
 <PARAM NAME="CONNECT"
VALUE="oracle://arcsde:1521/sid+test/user+RASTER/password+RASTE
R/defaultRowPrefetch+10"/>
</CREATE>

Inside the WCS SimpleProvider

The WCS SimpleProvider can be configured to serve Oracle
GeoRaster data. This is mainly done through an extension to the PATH
parameter and a set of GeoRaster-specific parameters. Those specific
parameters are:

• WCSProviderType: It can be either WCSGeoRasterProvider or
WCSArcSdeProvider

• connect: the connection string to the database or to the JNDI data
source

• table: the table name holding the GeoRaster column(s)

• name: the name to give to the layer

• column: the GeoRaster column

• id: the row id

• rasterdatatable: the Raster Data Table containing the actual image

• user: the table owner (optional)

394 Provider Types

Those parameters can be either defined individually as <PARAM>
elements, or grouped in the PATH parameter, or a mix. If set in the
PATH parameter, the syntax is:
(<name>=<value>)[(<name>=<VALUE>)]. Each parameter name is
then case-sensitive.

Example of Individual Oracle GeoRaster Parameters

<CREATE ID="SIMPLE_OGEOR1"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.SimpleProvider">
 <PARAM NAME="title" VALUE="ERDAS WCS server with GeoRaster"/>
 <PARAM NAME="abstract" VALUE="WCS over BOSTON imagery with
Oracle GeoRaster properties."/>
 <PARAM NAME="WCSProviderType" VALUE="WCSGeoRasterProvider" />
 <PARAM NAME="connect"
VALUE="oracle://geo.raster.com/user+myuser/password+mypwd/sid+M
YSID" />
 <PARAM NAME="table" VALUE="BOSTON_GEORASTER" />
 <PARAM NAME="name" VALUE="GEOR1" />
 <PARAM NAME="column" VALUE="georaster" />
 <PARAM NAME="id" VALUE="2" />
 <PARAM NAME="rasterdatatable" VALUE="rdt_boston" />
 <PARAM NAME="srs" VALUE="EPSG:26986" />
</CREATE>

The parameters can be grouped in a pseudo-path parameter, as soon
as case-sensitivity (most of them must be lowercase) of parameter
names is respected.

Example Grouped Oracle GeoRaster Parameters

<CREATE ID="SIMPLE_OGEOR2"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.SimpleProvider">
 <PARAM NAME="title" VALUE="ERDAS WCS server with GeoRaster"/>
 <PARAM NAME="abstract" VALUE="WCS over BOSTON imagery with
Oracle GeoRaster properties."/>
 <PARAM NAME="path"
VALUE="(WCSProviderType=WCSGeoRasterProvider)

(CONNECT=oracle://arcsde:1521/sid+test/user+RASTER/password+RAS
TER/defaultRowPrefetch+10)

(table=DMTEST3)(name=RASTER)(column=GEORASTER)(id=2)(rasterdata
table=RASTERTABLE3)"/>
 <PARAM NAME="srs" VALUE="EPSG:26986" />
</CREATE>

Provider Types 395

Inside the WCS Index- or MultiSimple-Provider

The WCS Index Provider and MultiSimple Provider are serving data
that are indexed in a WFS. As soon as indexing is achieved, the set of
coverage offerings and layers exposed by the service depend on the
data that have been indexed. For Oracle GeoRaster data to be indexed,
the pseudo-path syntax described in the previous section fully applies.
The "runwfsindexer" tool can be used as usual. The following example
shows what parameters are necessary to successfully index an Oracle
GeoRaster tile.

Example of Indexing a Oracle GeoRaster Tile

C:\Erdas\Apollo\tools\wcs> runwfsindexer -factory providers.fac
-name INDEX_GEOR -command addFile
-datapath
(table=DMTEST3)(column=GEORASTER)(id=2)(rasterdatatable=RASTERT
ABLE3)
(WCSProviderType=WCSGeoRasterProvider)(connect=oracle://arcsde:
1521/sid+test/user+RASTER/password+RASTER)

The Oracle GeoRaster tiles will be exposed as a single "GeoRaster"
Coverage Offering and Layer. It can be overriden by setting the "name"
parameter in a "CoverageOffering" PARAMBLOCK in the provider
configuration.

HDF-EOS Coverages This connector is deprecated but kept in the product and documentation
of backward-compatibility purposes. Beware that it could disappear in a
future release.

If the coverage data are in the HDF-EOS format, the framework will use
the NASA HEG tool to parse the files and convert them into GeoTIFF.
This HEG tool is free and can be downloaded from the web (see
http://eosweb.larc.nasa.gov/).

The download and use of the HEG tool may be subject to
restrictions that must be resolved with the providers of that tool. No
assumption is made on the "right of use" of the tool in ERDAS
products.

Obtain and install the HEG tool before configuring the provider. Do not
forget to have the HEG environment variables set properly before
starting the servlet engine or before running the command line scripts.
Currently, the mandatory variables are PGSHOME, MRTDATADIR and
MRTBINDIR (subject to change by NASA).

396 Provider Types

The configuration necessary to support this format is an addition to the
standard configuration of the providers above (Simple, Index, Multi
Simple or Hierarchical): The path to the HEG tool installation directory
must be defined in the providers.fac file. This is done by defining the
"hegpath" parameter. Moreover, as large temporary files are likely to be
produced, add the "tmppath" parameter linking it to a directory for
temporary files. If absent, the WCS uses the "hegpath" value as
temporary directory.

Note that the framework makes the assumption that for each coverage,
the metadata XML file is beside the HDF-EOS file, and has the same
name plus a ".xml" extension. This metadata file, if present, will be
converted "on-the-fly" into ISO 19115 in order to provide metadata
information to the user.

The following example shows the configuration of a Simple Provider to
handle a HDF-EOS coverage file. You will notice the
"backgroundValue" parameter which contains the value by band that
represents the absence of data. As an example, for images it is the
background value that will be set as transparent. The value can be
either a comma-separated list of values, one per band, or a single value
that will apply to all bands.

Example of a HDF-EOS Simple Coverage Entry

<CREATE ID="MODIS"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.SimpleProvider"
>
 <PARAM NAME="name" VALUE="MODIS"/>
 <PARAM NAME="title" VALUE="MODIS Coverage Server"/>
 <PARAM NAME="abstract" VALUE="MODIS Data over the USA"/>
 <PARAM NAME="metaurl"
VALUE="MOD09GHK.A2003189.h10v04.004.2003196000916.hdf.xml" />
 <PARAM NAME="keywords" VALUE="NASA,TERRA,MODIS,GRID"/>
 <PARAMBLOCK NAME="CoverageOffering">
 <PARAMBLOCK NAME="MOD_Grid_L2g_2d">
 <PARAM NAME="title" VALUE="MOD_Grid_L2g_2d data"/>
 <PARAM NAME="abstract" VALUE="MOD_Grid_L2g_2d data, one
granule"/>
 </PARAMBLOCK>
 </PARAMBLOCK>
 <PARAM NAME="hegpath" VALUE="/opt/heg/bin/" />
 <PARAM NAME="tmppath" VALUE="/opt/heg/tmp/" />
 <PARAM NAME="path"
VALUE="/home/Erdas/ApolloServer/data/coverages/heg/MODIS/MOD09G
HK.A2003189.h10v04.004.2003196000916.hdf" />
 <PARAM NAME="backgroundValue" VALUE="0" />
</CREATE>

Provider Types 397

It is possible to set up a Geotiff provider, starting from NASA HDF-
EOS files. To do so, use the HEG tool to convert the HDF-EOS
coverage into Geotiff. Additionally, ERDAS provides a Metadata
Decoding tool to convert the NASA Metadata XML files into ISO
19115 XML files.

Pyramid Provider For WMS connectors, it is possible to build a WCS Pyramid provider.
The WCS pyramid provider behaves exactly the same way as the WMS
pyramid provider. For more information, please see Pyramid Provider
Configuration.

All the proxied providers have to share the same coverage names,
i.e. the same filenames, only the resolution should vary. In clear, it
means a coverage name must be the same, which means the
filename for base images at each decimation level must be the
same.

The only differences in the Pyramid configuration are:

• The class that implements the WCS Pyramid Provider is
com.ionicsoft.wmtmap.provider.coverage.ScaleProvider instead of
com.ionicsoft.wmtmap.provider.proxy.ScaleProvider.

• The type of providers that can be proxied through the WCS Pyramid
Provider, are the various WCS providers, i.e., SimpleProvider,
MultiSimpleProvider or IndexProvider.

As with of the ERDAS WCS providers, the Pyramid Provider
implements the WMS interface and can answer GetMap requests if the
proper SLD rules are referenced in the Providers.fac configuration.

Below is an example of a WCS pyramid configuration:

<!-- The Pyramid Provider
This provider points to the other WCS providers defined in this
file -->
<CREATE ID="SCALE_WAL"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.ScaleProvider">
 <PARAMBLOCK NAME="1">
 <PARAM NAME="minscale" VALUE="0"/>
 <PARAM NAME="maxscale" VALUE="50000"/>
 <PARAM NAME="id" VALUE="WAL4"/>
 <PARAM NAME="master" VALUE="true" />
 </PARAMBLOCK>
 <PARAMBLOCK NAME="2">
 <PARAM NAME="minscale" VALUE="50000.000001"/>
 <PARAM NAME="maxscale" VALUE="100000"/>

398 Provider Types

 <PARAM NAME="id" VALUE="WAL16"/>
 </PARAMBLOCK>
 <PARAMBLOCK NAME="3">
 <PARAM NAME="minscale" VALUE="100000.000001"/>
 <PARAM NAME="id" VALUE="WAL32"/>
 </PARAMBLOCK>
</CREATE>

<!-- Service exposing a layer named Wallonia -->
<CREATE ID="WAL4"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.IndexProvider" >
 <PARAM NAME="name" VALUE="WAL4"/>
 <PARAM NAME="indexingProvider" VALUE="indexer.fac" />
 <PARAM NAME="indexingServer" VALUE="WAL4" />
 <PARAM NAME="srs" VALUE="31370" />
 <PARAM NAME="backgroundValue" VALUE="0" />
</CREATE>

<!-- Service exposing a layer named Wallonia -->
<CREATE ID="WAL16"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.IndexProvider" >
 <PARAM NAME="name" VALUE="WAL16"/>
 <PARAM NAME="indexingProvider" VALUE="indexer.fac" />
 <PARAM NAME="indexingServer" VALUE="WAL16" />
 <PARAM NAME="srs" VALUE="31370" />
 <PARAM NAME="backgroundValue" VALUE="0" />
</CREATE>

<!-- Service exposing a layer named Wallonia -->
<CREATE ID="WAL32"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.IndexProvider" >
 <PARAM NAME="name" VALUE="WAL32"/>
 <PARAM NAME="indexingProvider" VALUE="indexer.fac" />
 <PARAM NAME="indexingServer" VALUE="WAL32" />
 <PARAM NAME="srs" VALUE="31370" />
 <PARAM NAME="backgroundValue" VALUE="0" />
</CREATE>

GML Application Schema and Mapping to Databases 399

GML Application Schema and Mapping to
Databases

This chapter gives a detailed explanation on GML Application
Schemas, and on how to configure vector data sources behind the wfs
servlet.

• Concepts for GML Application Schemas

• Exposing GML Features in a WFS

• Definition of the configuration steps

• Feature Schema configuration

• Feature Mapping

• Additional configuration tasks

Introduction The Web Feature Server (WFS) makes it possible to expose data to the
world, providing a view or an abstraction of the physical data. This is
achieved through the definition of an Application Schema, that is
interoperable, ISO-Compliant, and prevents users from gaining visibility
into the nature of the computational infrastructure. For example, no one
will know if the data is stored in data files, in a database or computed
on the fly. A subset of the existing data can be presented while keeping
confidential information out of reach. The exposed features are named
Geospatial objects, and are a translation of the actual underlying data.
The WFS responds to the requirements of a secure web service for
interoperable exchange of geospatial objects, compliant with ISO,
exposing one or multiple restricted views on an existing proprietary data
resource.

Figure 1 below exposes the relationship between the data model used
inside the content repository and the GML application schema exposed
by the WFS. The relationship between those two models is achieved
through a “mapping” mechanism which is configured at the time of
setting up the service. The possibility of publishing a data model that is
different from the internal one depends on the software used to deploy
the nodes.

400 GML Application Schema and Mapping to Databases

The mapping is the configuration that describes the link between the
Feature Type definition and the objects stored in the underlying engine.
The mapping document associated with a WFS presents the necessary
information for the WFS to convert client requests to queries
understood by the data server. It also converts the result into a
compliant collection of features. Therefore, it makes the link between
the internal data structure and the published information.

This chapter's purpose is to expose the different types of Feature Type
relations, how to express these relations in a GML Application schema,
how to implement them in a relational database and finally how to map
this internal relational data model with the exposed object model.

Figure 125: Internal Data Model versus Exposed Feature Types

Key Concepts To map an Application Schema onto a Database Model, it is necessary
to understand clearly what each of those words mean. The scope of this
section is to provide a short explanation.

Application Schema The ISO 19109 standard "Rules for application schema" provides the
following definition and purpose of an application schema:

GML Application Schema and Mapping to Databases 401

An application schema provides the formal description of the data
structure and content required by one or more applications. An
application schema defines:

• The content and structure of data;

• Specifications of operations for manipulating and processing data
by an application.

The purpose of an application schema is twofold:

• to provide a computer-readable data description defining the data
structure, making it possible to apply automated mechanisms for
data management;

• to achieve common and correct understanding of the data, by
documenting the data content of the particular application field, and
thereby making it possible to unambiguously retrieve information
from the data.

ISO 19109 application schemas are defined in a conceptual schema
language: the Universal Modeling Language (UML).

In the case of a geospatial application schema, the concepts of the
General Feature Model (GFM) are mapped to the concepts of the UML
conceptual language. The General Feature Model is a model of
concepts required to classify a view of the real world expressed in UML.
The objects that are classified are called features; relations between
features are feature associations and inheritance. Feature Types have
properties that are feature attributes, feature operations and feature
association roles. The GFM is a meta model of feature types [ISO01b].

As an application schema deals with representing features, the
structure of the GFM has to be kept in mind while creating the
application schema. For more detailed information refer to the
ISO19109 document.

GML Application Schema A Geographic Markup Language (GML) application schema is an XML
schema that describes one or more types of geographic objects
[OGC03]. One can consider the GML application schema as a physical
implementation of an ISO 19109 application schema. GML application
schemas define the encoding of geospatial information. GML
application schemas are used by Web Feature Servers (WFS) to
encode geospatial data into GML and deliver it over the Web. User’s
Application Schemas have to extend the basic types defined in the GML
Schema in order to be manageable by a WFS and be compliant with the
GML specification (Figure below).

402 GML Application Schema and Mapping to Databases

Figure 126: GML Schema Structure

Feature and Feature Type A feature is an abstraction of real world phenomena. It is a geographic
feature if it is associated with a location relative to the Earth. The state
of a feature is defined by a set of properties. The number of properties
a feature may have together with their names and types are determined
by its type definition, the feature type.

An abstract feature type provides a set of properties common to several
feature types. A concrete feature (by opposition to abstract) must derive
from this type and may specify additional properties.

Mapping GML Application Schemas are object-oriented while most databases
are relational. The mapping consists of writing a correspondance
between a GML Application Schema document and a Database Model,
thus it is in an object-to-relational mapping.

The way the mapping is done is specific to a vendor. ERDAS writes the
mapping in an XML document that can be built either using one of the
command-line tools coming along with ERDAS APOLLO, or manually.
In some cases, the mapping is implicit and does not need any
document.

Configuration
Overview

The ERDAS WFS is the component that delivers a Feature Service
above geospatial engines. These engines can provide datasets on
request. For example, imagine that a city planner has legacy data in
Oracle about land parcels, the road network and point locations of trees
in the city. The planner wants to publish this data online. Therefore, the
planner needs to examine the following factors:

• Define which features to publish online for external users. For
example, all of the roads in the city do not need to be exposed,
especially private roads or maintenance roads. Therefore, expose
only a subset of the information available.

GML Application Schema and Mapping to Databases 403

• Express what attributes of a Feature to expose. There is a lot of
information about roads - the length of the road, the type of road,
what material the road is made out of and the age of the road.
However, the users are only really interested in the name and types
of road in the city. Therefore only expose the RoadName and
RoadType as a subset of all the attributes available. This
configuration is called the "FeatureType definition".

• Transform the information coming from the legacy data into the
ERDAS WFS. This information expresses where the feature server
gets the information. For example, the RoadName information will
come from the field "ROAD_Naming" from table "Road" located in
the Oracle database, MyCity. This part of the configuration is called
"the mapping configuration".

• The source of the data and what connector is needed to get data
from the legacy database into ERDAS servlets. Each legacy data
type will have it's own ERDAS connector. However, for the same
database, multiple connectors with specific behaviors may exist, as
in the following example.

If accessing an Oracle database, there could exist an "Oracle OCI
Connector" and an "Oracle thin Connector" using different
technologies. Also, there might be a connector with some capabilities
(e.g. Read Only) and in the future, maybe another connector that could
also support transactions. This part of the configuration is called "the
provider configuration".

So, to configure a WFS Service, the common configuration steps are
the following:

1. Define a GML Application Schema definition of the feature types to
expose.

2. Establish the corresponding mapping to the data store.(often a SQL
mapping)

3. Configure the global framework parameters.

4. Indicate for each service the connectors to use in the providers file.

Done. The configuration can be tested.

404 GML Application Schema and Mapping to Databases

Figure 127: WFS Configuration

The Feature type definition and the mapping definition can lie in the
same file if needed, but it is recommended that they be maintained
separately for ease of use.

For the following sections, it is necessary for the Administrator to
have a basic knowledge of Java programming and a good
understanding of the XML philosophy, structure and syntax. GML
Application Schema notions are helpful.

Each of those three resources (providers.fac, feature type definition
and mapping files) has to be reachable by the feature service, in one or
more ways. The most common being via the CLASSPATH of the JVM
running the feature services.

Common mistake: Remember that if modifying the feature type
definition, the mapping needs to be updated too.

Feature Schema
Configuration

The XML Schema associated with a WFS gives the GML Application
Schema (structure) needed by the WFS to expose its feature types. The
schema provides the type descriptions structure for each feature type
and its properties.

GML Application Schema and Mapping to Databases 405

GML Application Schema
Construction

A XML Schema definition document should be provided for the feature
types to be published as GML, either through a WFS or not. The syntax
has to conform to the W3C XML Schema specification (see W3C XML
Schema) and respect the GML constraints. This schema does not need
to be built manually if it is provided by an authority. It could also be built
with one of the tools provided in the ERDAS APOLLO distribution (see
the Tools and Viewer chapter). Note that such a schema is independent
from the vendor who provides an infrastructure to expose the features.
Only the limitations of the vendor's product are to be considered.

Here’s a sample of a GML feature Type named "Road".

Example:A Simple Feature Type Definition
<xsd:schema targetNamespace="http://www.erdas.com/wfs"
elementFormDefault="qualified" version="0.1">
<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/featu
re.xsd"/>
 <xsd:element name="Road" type="wfs:RoadType"
substitutionGroup="gml:_Feature"/>
 <xsd:complexType name="RoadType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="streetName" type="string"/>
 <xsd:element name="centerLine"
type="gml:LineStringPropertyType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

The Steps to Construct
the Feature Type Schema

These steps aim to help manually build the GML Application Schema
for the information to publish. This information must be expressed in
terms of feature types and properties of each feature type.

The following steps do not apply if a mapping of type "SQL" is
applied. In that case, the feature type schema is created on-the-fly
based on the database schema.

See the "Feature Mapping" section below for a complete explanation of
the types of mappings available, and which one to use depending on
the case.

1. Decide the names of the features types to publish.

http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema

406 GML Application Schema and Mapping to Databases

The first task is to build the list of feature type names to publish. It often
closely correlates with relational table names or entities of the real world
(building numbers, land usage types, tree locations).

2. Decide the names, types and cardinalities of the properties.

For each of the feature types, decide which properties will be visible.
These can be a sub-set of the existing data properties, or a super-set
where calculated properties are defined, or a 1 to 1 matching with actual
properties.

For each property, figure out its type (integer, string) and cardinality. It
is strongly recommended to reuse existing types as often as possible.
This is because when mentioning existing schema's in <import>
clauses, the generic type "xsd:string" given to the property "STATION"
can be replaced by a type (fictive):"ceos:StationType". The "ceos"
prefix has to be defined in the header of the schema, with a syntax like:
xmlns:ceos="http://www.ceos.org/ceos" and this schema must
be included in the deployement, with a clause like: <xsd:import
namespace = "http://www.ceos.org/ceos" schemaLocation =
"ceos.xsd" />.

For geometric properties, also analyse existing data to determine their
type, and decide what WFS geometric property it matches. The most
common geometries are Point, LineString (List of points that defines a
line), Polygon and Text. Compound properties like MultiLineString,
MultiPolygon are also supported.

If a property is a collection of other feature types, this feature type must
be defined recursively and the proper type name set in the main feature
type definition.

3. Decide the optionality of the properties. If a property can be empty, the
server will either output it with an empty value, avoid to output it at all,
or output it with no value. If the property has to be output, the attribute
minOccurs="1" should be added to the schema. If it has to be output,
even as a null string (looking like: <Prop1/>), the nillable="true" attribute
should be added.

Note: the minOccurs="1" attribute should be added if it is expected that
users will request output to the ShapeFile format (option
outputFormat=SHAPE in the GetFeature request). If not, ShapeFile
readers could fail due to absent properties in some features.

4. Encode the feature type and property definitions in the XML Schema
encoding

Edit the document manually with a text editor or by using an XML editor.
It is suggested use one of the sample XML Schemas provided with the
product and replacing the sections with the specific information.

GML Application Schema and Mapping to Databases 407

5. Mention the schema file in the providers.fac associated to the service.

Control the Schema correctness and GML FeatureType definition:

• Check whether the schema is syntactically correct by using any
third-party commercial tool that performs XML and XML Schema
validation (xalan or saxon).

• To see if the feature type schema is correct, wait until the WFS
service is fully configured, and ask for a DescribeFeatureType on all
the feature types of the WFS. It should provide an answer that
matches the definitions.

Feature Mapping This chapter introduces the key aspects of the mapping configuration:

• What is mapping

• What are the different types of mapping

• How to choose what mapping to use

• Explicit Mapping

• SQL Mapping

• Automatic Mapping

• Relational (Explicit) Mapping

• Mapping of Enumerations

• Other Mappings

Mapping Concepts The mapping is the configuration that describes the way ERDAS WFS
achieves the link between the FeatureType definition and the objects
returned by the underlying engine. The mapping document associated
with an ERDAS WFS presents the necessary information for the WFS
to convert client requests into queries understood by the data server. It
also converts the result into a compliant collection of features.
Therefore, it makes the link between the internal data structure and the
published information.

408 GML Application Schema and Mapping to Databases

Figure 128: WFS Mapping

The mapping file, written in XML, defines how the features types
declared in the XML schema document are mapped onto the underlying
data server. The mapping file name is either referenced by the
"MAPPING" parameter of the provider (see the "Provider Configuration"
chapter) or the mapping information is in the feature schema file.

The mapping information is contained in several tags: <MAPPING> is
the main one. The <INFO>, <EXPORT>, <COLLECTION> and
<OPTION> tags can be used to provide additional information such as
Spatial Reference Systems, Bounding Box and additional dimensions.

Mapping Methodology To map a set of Feature Types to database tables and relations, we
propose several ways to achieve the mapping. Each applies in given
situations and this section provide guidance in choosing the appropriate
type of mapping.

GML Application Schema and Mapping to Databases 409

Types of Mapping

The mapping can be explicit or implicit. If the mapping is explicit, then
the file will contain all the information needed by the connector to
manage the mapping. This is the case for the "Explicit Mapping" where
for each element of the FeatureType, there will be an explicit link to an
attribute of a table or a view. The mapping can also be implicit and
completely managed by the connector or the framework itself. This is
the case when the mapping is done by the code of the connector based
on internal hypothesis or knowledge.

• Explicit Mapping: Explicit mapping is where a fully specified details
of the feature are mapped to a database. With this mapping, define
the mapping by hand in an explicit way, or use a tool to build it from
the database model or from the GML Schema.

• SQL Mapping: The SQL mapping allows taking a table or multiple
tables and asking the framework to make a 1:1 mapping from the
table to a dynamically created feature. Implementing this, makes
going from Table to Feature simple. There are no feature types to
define and no complex mapping to do. The mapping from the tables
to the feature type is implicit and managed by the framework.

• Automatic Mapping: This mapping is somehow the reverse of the
SQL mapping. In automatic mapping, define a FeatureType in GML
Application Schema and then submit the FeatureType to the engine
that will create all the tables needed to support. The mapping from
the FeatureType to the tables is implicit and managed by the
framework.

• Relational (Explicit) Mapping: It is an explicit mapping, but where
several tables are mapping onto a single feature type with complex
properties.

• Auto-Generated Mapping: This mapping, derived from the
Automatic Mapping, permits generating the mapping file instead of
having the framework manage it. It allows a user to make changes
in the mapping to fit the database model.

• XML Enumeration and Relational Enumeration Mappings: Allows
mapping of enumerated values to an XML list or a table.

How to Choose a Mapping

To find out which mapping is best, look at these tips:

• If there are simple tables or Shapefiles be to publish in a minute, use
the SQL mapping.

410 GML Application Schema and Mapping to Databases

• If there are simple tables or Shapefiles, but well formatted, well
named or retyped attributes are to be exposed, use the explicit
mapping. Use one of the "runfromsqlxxx" script to build the schema
and mapping files automatically from the data source.

• If there are complex GML FeatureTypes and the database is not yet
built, use the Automatic mapping to create the tables.

• If there are a set of tables whose columns should appear in a single
GML Feature Type, define a Relational Explicit Mapping.

• If there are a complex GML Application Schema with some of the
data types being abstract in the GML Specification, the Auto-
Generated Mapping is required to build the tables from the schema,
and to be able to substitute those abstract types with real ones.

• If there are a set of feature types with enumerated values for some
of the properties use the XML Enumeration Mapping if the values
are listed in the schema or the Relational Enumeration Mapping if
those values are stored in a table.

Mapping Tags
Description

The mapping file is made of XML elements, named <MAPPING>,
<INFO>, <EXPORT>, <COLLECTION> and <OPTION>. Please refer
to the "Mapping tags" appendix for the list of XML tags that can appear
in the mapping section document.

The <MAPPING> Tag

This tag describes the link between the FeatureType definition and the
objects returned by the underlying engine.

See the "Feature Mapping Tags" Appendix for a complete description
of the sub-tags or the next section for step-by-step building of the
mapping.

The <INFO> Tag

As the data store may not provide all the information necessary for the
service to be OGC-compliant, this tag contains additional information to
complete it.

Spatial Reference Systems, Bounding Box, additional dimensions,
allowed operations are some of the possible entries.

See the "Feature Mapping Tags" Appendix for a complete description
of the sub-tags.

GML Application Schema and Mapping to Databases 411

The <EXPORT> Tag

This tag defines which FeatureTypes are really presented to the world.

See the "Feature Mapping Tags" Appendix for a complete description
of the sub-tags.

The <COLLECTION> Tag

This tag renames the root element produced by a getFeature request.
The default is "featureCollection" but may be renamed if needed.

See the "Feature Mapping Tags" Appendix for a complete description
of the sub-tags.

The <OPTION> Tag

This tag sets properties that apply to all feature types or just those
related to the requests. Settings like output image resolution or
Transactions response can be defined.

See the "Feature Mapping Tags" Appendix for a complete description
of the sub-tags.

Explicit Mapping
Definition Steps

Also named "specific mapping" this mapping makes no assumptions on
the correspondance between the feature type structure and the actual
data. Create the GML schema definition of the feature type (see
previous chapter). For each of the properties of the feature type,
mention in the mapping document which piece of data corresponds.
The following section describes all the possible tags accepted in the
mapping document. Most of them apply in the explicit mapping.

All of the connectors support this type of mapping.

This description explains how to fill the XML mapping document when
the data source supports SQL requests and the mapping is explicit.

For non-relational or specific data sources, please call ERDAS to
obtain the appropriate guide.

Follow these steps:

1. Build a <Mapping> ... </Mapping> block that contain the mapping
tags, and the additional information.

412 GML Application Schema and Mapping to Databases

2. Build one <SQL> ... </SQL> block and one <Info> ... </Info>
block per feature type defined in the XML Schema.

3. The <SQL> element must have a "name" attribute whose value must be
the name of the feature type (case-sensitive) preceded by the
namespace prefix declared in the XML Schema header (commonly
"wfs:").

The SQL value can also have a "generation" attribute with the value
"specific" that notes that this type of mapping is used. This is the default
value.

4. If a data server table is mapped onto a feature type, the <Table>
element must contain the name of that table.

5. If a data server table is mapped onto a feature type, create as many
<Element> entries as there are columns to map with a property.

6. Each feature type has a "fid" attribute that uniquely identifies it. The
<Primary> element is required and it must contain the name of the
primary key column in the data server table.

7. Other elements can be added in the <SQL> section. They are listed and
described in the previous section.

8. In the <Info> section, a "name" attribute must be define with the same
rule as for the <SQL> element described above.

9. There must be at least one <SRS> that identifies the reference system
of the data store. If more than one SRS is to be published in the
capabilities, add all of them in the <SRS> tag separated by spaces.
Being aware that the first item of the list is seen as the internal one.

10. Put at least one <BoundingBox> element giving the extents of the data.

11. If more request types are required beyond those supported by the Basic
WFS, add an <Operations> element that lists the supported operations.
See previous section for a complete list of operations.

Mention the mapping file in the providers.fac, associated to the service
(see "Providers Configuration" section).

Example:Sample Explicit Mapping File
...
 <Mapping>
 <SQL name="wfs:RoadType">
 <Table nameSQL="ROAD"/>
 <Primary nameSQL="ROAD_ID" type="int"/>
 <Element name="wfs:streetName" nameSQL="NAME"/>
 <Element name="wfs:centerLine" nameSQL="GEOMETRY"/>
 </SQL>
 </Mapping>

GML Application Schema and Mapping to Databases 413

 <Info name="wfs:RoadType">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180." miny="-90."
 maxx="180." maxy="90." />
 <Operations>Query</Operations>
 </Info>
 <Export generation="exportOnly">
 <Add name="wfs:RoadType"/>
 </Export>
</Mapping>

SQL Mapping Definition
Steps

This type of mapping allows a much lighter configuration, as the
mapping manager achieves a one-to-one conversion from the SQL
schema to the feature type schema. So, NO GML Schema is necessary
when this mapping type is used. This type of mapping allows building
the feature type schema from the database schema. Simply define the
name of the table to publish and the framework does the job of building
the feature type description. (Note: For non-relational or specific data
sources connectors, the mapping may be implicit or explicit with specific
behavior. Please call ERDAS to obtain the appropriate guide.) When
this type of mapping is used, the <SQL> element can only contain a
<Primary> property. None of the other tags belonging to the <SQL>
section is allowed.

All vector connectors, except the "GML" connector, support this
type of mapping.

It is also useful to note that, in the particular case of the Sql
mapping, the table name provided can also be a pattern. The
widest pattern is "%", and will lead to the mapping of each of the
tables accessible by the user onto a feature type. This means that
all tables found, including System tables, may be matched. This
can be restricted either by giving a more restrictive pattern, for
example "ADMIN%", or by adding the "schema" attribute to the
<SQL> element to restrict its scope to the given database schema
(or user). An alternative is to do an explicit mapping and adding the
"user" attribute in the <Table> element.

For SQL mapping, follow these steps:

The process followed by the mapping manager is to analyze the SQL
metadata and build the feature type schema accordingly. The minimum
information to provide is the name of the table to map, and the script
'generation="sql' so that the manager knows it has to do the mapping.
However, additional explicit information can be provided, like the
primary key column name, so that some flexibility is retained.

414 GML Application Schema and Mapping to Databases

1. Build a <Mapping> ... </Mapping> block that will contain the mapping
tags, and the additional information.

2. Build one <SQL> ... </SQL> block and one <Info> ... </Info>
block per feature type to define.

3. The <SQL> element must have a "name" attribute whose value must be
the name of the table found in the database schema, or a pattern. The
widest pattern is "%" and will lead to the mapping of each of the tables
accessible by the user onto a feature type. Beware that if the user has
privileges to access system tables, they will also be mapped.

4. It must also have a "generation" attribute, with the value "sql".

5. Each feature type having a "fid" attribute which uniquely identifies it. A
<Primary> element must be created that contains the name of the
primary key column in the data server table. If no <Primary> tag is
defined, the "fid" value is built randomly and no persistence is insured
for this value.

6. No other element can be added in the <SQL> section.

7. When starting the <Info> section, the element must have a "name"
attribute whose value must be the name of the feature type (case-
sensitive, equivalent to the name of the table) preceded by the
namespace prefix "wfs:".

8. In the <Info> section, include at least one <SRS> element identifying
the reference system of the data store. If publishing several SRSes in
the capabilities, add all of them in the <SRS> tag separated by spaces.
Being aware that the first item of the list is seen as the internal one.

9. Put at least one <BoundingBox> element giving the extents of the data.

10. If extending the request types supported beyond those of a Basic WFS,
add an <Operations> element that lists the supported operations. See
previous section for a complete list of operations.

11. Mention the mapping file in the providers.fac associated to the service
(see "Providers Configuration" section).

Example:Sample SQL Mapping File
<Mapping>
 <SQL name="%" generation="sql" >
 </SQL>
 <Info>
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180" miny="-90"
 maxx="180" maxy="90" />
 </Info>
...
</Mapping>

GML Application Schema and Mapping to Databases 415

The distribution contains a sample SQL mapping file, named
generic_sql_mapping.xml, located in the same directory as the
WFS providers.fac file. Use it as a template for the own mapping.

Automatic Mapping
Definition Steps

This type of mapping is the way to convert a given feature schema onto
a database schema based on feature type definitions. To achieve this
mapping, it is first necessary to use the "Schema Generator" tool that
builds a SQL script to generate the tables. As the mapping manager
uses the same logic as the schema generator tool, the mapping is done
automatically at run time. Note that this type of mapping still allows
mapping rules since these rules are used when generating the SQL
script. For example, a mapping rule can tell if a sub-collection is stored
as a Blob, binary large object, or if it is expanded in each of its
components in the data store. When the XML Schema document
describing the feature types is the starting point, and the database
structure can be created from it, this type of mapping applies.

Automatic mapping is also a convenient way to set-up storage for
complex feature types. This mapping implies a two - step process: First,
run the "Schema Generator" tool provided with the distribution. As entry
parameters, it takes the name of the XML schema, and, optionally, the
name of the mapping document. The output is a SQL script for the
database schema generation (tables, indexes, or sequences). Then, at
run time, the framework does the mapping automatically. In term of
mapping directives, the <SQL> element must mention the attribute
"generation" with the value "auto". Connectors supporting this type of
mapping are Oracle Thin, Oracle OCI and PostgreSQL.

Follow these steps:

1. Take the XML schema file or build it according to GML rules.

2. Build a mapping file giving some mapping rules and input the value
"auto" into the "generation" attribute.

3. Run the Schema Generator to obtain the SQL script.

4. Run this SQL script once to generate the tables.

5. Run the Schema Generator again, with the -delete option, to obtain the
deletion SQL scripts. Backup the produced script, allowing for later
removal of the tables. This script is useful when the number of tables is
large.

6. If the WFS manages transactions, make sure the LOCKTIMEOUT table
is created, as it will store locking information along with the "LK" field
generated by the tool. The SQL script to generate the LOCKTIMEOUT
table can be found in the distribution CD under data/db/lock.sql .

416 GML Application Schema and Mapping to Databases

You can name the Lock-Id field (predefined as "LK") differently, as
soon as you add a <Lock> tag in the mapping file to tell the service
what field is used to manage locking.

If you do not want to manage transactions, it could be necessary to
explicitly disable the "Lock" operation in the <Operations> tag for
your feature type(s).

7. At this stage, insert and then retrieve a feature to ensure the structure
corresponds to the expectations. If not, modify the schema file or the
mapping rules, run the del.sql script to remove the tables, and return to
step 3.

Example:Sample Automatic Mapping File

In the following example, the feature type is named AnnotationListType,
defined in an XML Schema whose prefix has been set to "xima". The
<Element> items in the mapping allow restricting the type of values in
the given properties. The <Info> tag contains an <Operations> element
that explains which types of requests are allowed on this feature type.
The "*" sign means ALL and corresponds to "Insert, Delete, Update,
Lock and Query". Note that the sample is for illustration purposes only
and, therefore, the additional information necessary is not
provided(such as "xima" schema, "iap" schema, and the definitions of
the other feature types mentioned in the example).

<Mapping>
 <SQL name="xima:AnnotationListType" generation="auto">
 <Element name="xima:Metadata">
 <Type name="iap:AnnotationMetadataType"/>
 <Type name="iap:ImageMetadataType"/>
 </Element>
 <Element name="xima:Content">
 <Type name="iap:SimpleContentType"/>
 </Element>
 <Element name="xima:ImageReference">
 <Type name="iap:ImageURLType"/>
 </Element>
 </SQL>
 <Info name="xima:AnnotationListType">
 <Operations>*</Operations>
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180." miny="-90."
 maxx="180." maxy="90." />
 </Info>
...
</Mapping>

GML Application Schema and Mapping to Databases 417

Relational (Explicit)
Mapping Definition Steps

It starts with defining a simple Explicit Mapping for each of the tables to
map with one feature type per table.

Then, changed have to be done like described below in order to map
the relations.

The first case described is for a composition where a single feature type
gets its properties from a nested table. Another case is the association
where several feature types have their own existence but are related
(like the Parcel/Person relationship).

By definition, "The aggregation is a special type of association used to
represent a "part of" relationship between two feature types. A key
indicator of an aggregate relationship is feature types that share a
lifetime. If the containing feature type is destroyed the contained feature
type is destroyed with it."

And "A composition is the strongest relationship between two feature
types. Composition is a special form of aggregation that indicates not
only lifetime association but typically exclusive containment as well."

Composition

The explanation is based on the Road vs. Lane relationship where a
Road is composed of one or more Lanes as shown in the UML diagram
below.

Figure 129: Road-Lane UML Diagram

It is assumed that the underlying database is Oracle and the
relationship between the ROAD and LANE tables is based on a primary
key - foreign key relationship as in the digaram below.

Figure 130: Road-Lane Relational Diagram

418 GML Application Schema and Mapping to Databases

As soon as an Explicit Mapping has been produced for the Road and
Lane feature types, there should be a GML Application Schema with
those two feature types defined, as in the "Simple Feature Type
Definition" example above. Note that the GML3 rules are being used to
define complex properties. Avoid relying on the old-fashioned GML2
syntax. Review the "Moving to GML3" section below for guidelines on
how to get familiar with GML3 and how to migrate GML2 schemas to
GML3.

Example:Road and Lane Feature Types
<xsd:schema targetNamespace="http://www.erdas.com/wfs"
elementFormDefault="qualified" version="0.1">
<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/featu
re.xsd"/>
 <xsd:element name="Road" type="wfs:RoadType"
substitutionGroup="gml:_Feature"/>
 <xsd:complexType name="RoadType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="streetName" type="string"/>
 <xsd:element name="centerLine"
type="gml:LineStringPropertyType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

GML Application Schema and Mapping to Databases 419

 </xsd:complexType>
 <xsd:element name="Lane" type="wfs:LaneType"
substitutionGroup="gml:_Feature"/>
 <xsd:complexType name="LaneType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="geometry"
type="gml:PolygonPropertyType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

In this example, the Road feature type has a "centerLine" geometric
property and a "streetName". Of course, as it inherits from
gml:AbstractFeatureType, it has a set of additional properties like
"gml:name" and "gml:description". Those properties will appear in the
mapping file if they are mapped with a table column in the database.

The Lane feature type has a Polygon-type geometric property, and the
gml:name inherited property will be mapped.

To explicitly map those feature types onto SQL tables, a mapping file
similar to the "Sample Explicit Mapping File" example above is needed.
That same mapping extended to include the Lane feature type will look
like the example below.

Example:Road and Lane Mapping
...
 <Mapping>
 <SQL name="wfs:Road">
 <Table nameSQL="ROAD"/>
 <Primary nameSQL="ROAD_ID" type="int"/>
 <Element name="wfs:streetName" nameSQL="NAME"/>
 <Element name="wfs:centerLine" nameSQL="GEOMETRY"/>
 </SQL>
 <SQL name="wfs:Lane">
 <Table nameSQL="LANE"/>
 <Primary nameSQL="LANE_ID" type="int"/>
 <Element name="gml:name" nameSQL="NAME"/>
 <Element name="wfs:geometry" nameSQL="GEOMETRY"/>
 </SQL>
 </Mapping>
 <Info name="wfs:Road">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180." miny="-90."
 maxx="180." maxy="90." />
 <Operations>Query</Operations>
 </Info>
 <Info name="wfs:Lane">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180." miny="-90."
 maxx="180." maxy="90." />

420 GML Application Schema and Mapping to Databases

 <Operations>Query</Operations>
 </Info>
 <Export generation="exportOnly">
 <Add name="wfs:Road"/>
 <Add name="wfs:Lane"/>
 </Export>
</Mapping>

In that mapping example, notice that the mapped elements are the
feature type names (Road and Lane) and not the complex type names
(RoadType and LaneType) . This is a constraint relating to GML3
model. For GML2 feature types, the complex type names have to be
mapped.

Now, express each road as composed of one or more lanes. First
extend the GML schema to add a "hasLanes" property (cardinality 1..n)
to the RoadType type and define the "HasLanesType" type that will hold
the Lane features. The schema become like in the example below.

Example:Related Road and Lane Feature Types
<xsd:schema targetNamespace="http://www.erdas.com/wfs"
elementFormDefault="qualified" version="0.1">
<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/featu
re.xsd"/>
 <xsd:element name="Road" type="wfs:RoadType"
substitutionGroup="gml:_Feature"/>
 <xsd:complexType name="RoadType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="streetName" type="string"/>
 <xsd:element name="centerLine"
type="gml:LineStringPropertyType"/>
 <xsd:element name="hasLanes" type="wfs:HasLanesType"
minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="HasLanesType">
 <xsd:sequence>
 <xsd:element ref="wfs:Lane"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="Lane" type="wfs:LaneType"
substitutionGroup="gml:_Feature"/>
 <xsd:complexType name="LaneType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="geometry"
type="gml:PolygonPropertyType"/>
 </xsd:sequence>
 </xsd:extension>

GML Application Schema and Mapping to Databases 421

 </xsd:complexContent>
 </xsd:complexType>

The next step consists in expressing the relation in the mapping file and
mapping it to the database tables and foreign keys. The relation itself
will be modeled using a <Relation> element in the <Mapping> tag as
defined in the "Feature Mapping Tags" appendix. For our example, the
content of this tag will be:

<Relation sourceType="wfs:Road"
 targetType="wfs:Lane"
 source="wfs:hasLanes"
 targetSQL="C_ROAD_ID"
 ownership="true"
/>

"wfs:Road" and "wfs:Lane" are respectively the parent and child ends
of the relation. "wfs:hasLanes" is the source property name.
"C_ROAD_ID" is a column of the "LANE" table that models the target
field of the relation and the source field being the ROAD_ID in the
ROAD table. The "ownership" set to true means that when a Road
feature is deleted and that, the underlying Lanes will be removed as
well.

Finally, extend the mapping of the wfs:Road type to tell that it is involved
in a relation. This is done first by changing its "generation" attribute from
its default value to "relational" and second by assigning it a
"wfs:hasLane" property which is the source of the relation, through the
ROAD_ID key in the ROAD table. The mapping file now looks like
below.

Example:Road and Lane Relational Mapping
...
 <Mapping>
 <SQL name="wfs:Road" generation="relational">
 <Table nameSQL="ROAD"/>
 <Primary nameSQL="ROAD_ID" type="int"/>
 <Element name="wfs:streetName" nameSQL="NAME"/>
 <Element name="wfs:centerLine" nameSQL="GEOMETRY"/>
 <Element name="wfs:hasLanes" nameSQL="ROAD_ID" />
 </SQL>
 <SQL name="wfs:Lane">
 <Table nameSQL="LANE"/>
 <Primary nameSQL="LANE_ID" type="int"/>
 <Element name="gml:name" nameSQL="NAME"/>
 <Element name="wfs:geometry" nameSQL="GEOMETRY"/>
 </SQL>
 <!-- Relation between Road and Lane -->
 <!-- Note that C_ROAD_ID is a column of LANE -->
 <Relation sourceType="wfs:Road"
 targetType="wfs:Lane"
 source="wfs:hasLanes"
 targetSQL="C_ROAD_ID"

422 GML Application Schema and Mapping to Databases

 ownership="true"
 />
 </Mapping>
 <Info name="wfs:Road">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180."
miny="-90." maxx="180." maxy="90." />
 <Operations>Query</Operations>
 </Info>
 <Info name="wfs:Lane">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180."
miny="-90." maxx="180." maxy="90." />
 <Operations>Query</Operations>
 </Info>
 <Export generation="exportOnly">
 <Add name="wfs:Road"/>
<!-- We do not expose wfs:Lane anymore -->
 </Export>
</Mapping>

Below is a sample GML output from this WFS for the Road feature type.
It is clear that one or more Lane types are linked to the parent Road.

Example:Road and Lane Sample GML3 Output
<wfs:Road id="RoadType.1">
 <gml:streetName>Main Street</gml:streetName>
 <wfs:centerLine>
 <gml:LineString srsName="EPSG:4326">
 <gml:pos>-112.09332 33.5698333</gml:pos>
 <gml:pos>-111.95549 33.666975</gml:pos>
 <gml:pos>-111.76598 33.480425</gml:pos>
 <gml:pos>-111.90496 33.3826028</gml:pos>
 <gml:pos>-112.09332 33.5698333</gml:pos>
 </gml:LineString>
 </wfs:centerLine>
 <wfs:hasLanes>
 <wfs:Lane>
 <gml:name>this is a Lane belonging to Road 1</gml:name>
 <wfs:geometry>
 <gml:Polygon srsName="EPSG:4326">
 <gml:exterior>
 <gml:LinearRing srsName="EPSG:4326">
 <gml:pos>-116.09332 33.5698333</gml:pos>
 <gml:pos>-111.95549 33.666975</gml:pos>
 <gml:pos>-111.76598 33.480425</gml:pos>
 <gml:pos>-111.90496 33.3826028</gml:pos>
 <gml:pos>-116.09332 33.5698333</gml:pos>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </wfs:geometry>
 </wfs:Lane>
 <wfs:hasLanes>
</wfs:Road>

GML Application Schema and Mapping to Databases 423

Association

We use associations (which are neither aggregations nor compositions)
when there is no ownership between the object types, and when the
relation is 1..many or many..many. It will be modeled with an
intermediary table, like in the example below.

The example describes the ownership relation between Parcels and
Persons, like illustrated in the diagram below. A person can own zero,
one or many parcels while a parcel belongs to at least one or many
persons. If a person owning a parcel dies the parcel continues to exist,
only the relation between that specified person and the parcel will
disappear. Also once a parcel is deleted (because of a split or merge for
instance), the person continues to exist.

The complete mapping and schema files for this example are
available in the distribution, under the data/erdas-
apollo/db/oracle/ParcelPerson directory. They should be copied to
config/erdas-apollo/providers/vector so that they can be
referenced by their name in the providers.fac . The SQL
instructions to build the tables and data are also provided.

Figure 131: Parcel-Person UML Diagram

It is assumed that the underlying database is Oracle and the
relationship between the PARCEL and PERSON tables is based on a
many..many relationship, the REL_PARCEL_PERSON holding the
relations, as in the diagram below.

424 GML Application Schema and Mapping to Databases

Figure 132: Parcel-Person Relational Diagram

As soon as an Explicit Mapping has been produced for the Parcel and
Person feature types, a GML Application Schema appears with those
two feature types defined, as in the "Simple Feature Type Definition"
example above. Note that the GML3 rules are being used to define
complex properties. Avoid relying on the old-fashioned GML2 syntax.
Review the "Moving to GML3" section below for guidelines on how to
get familiar with GML3 and how to migrate GML2 schemas to GML3.

Example:Parcel and Person Feature Types
<xsd:schema targetNamespace="http://www.erdas.com/wfs"
elementFormDefault="qualified" version="0.1">
<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/featu
re.xsd"/>
 <xsd:element name="Parcel" type="wfs:ParcelType"
substitutionGroup="gml:_Feature"/>
 <xsd:complexType name="ParcelType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="IDParcel" type="integer"/>
 <xsd:element name="extent"
type="gml:SurfacePropertyType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="Person" type="wfs:PersonType"
substitutionGroup="gml:_Feature"/>
 <xsd:complexType name="PersonType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>

GML Application Schema and Mapping to Databases 425

 <xsd:element name="IDPerson" type="int"/>
 <xsd:element name="firstName" type="string"/>
 <xsd:element name="lastName" type="string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

In this example, the Parcel feature type has an "extent" geometric
property and an ID. Of course, as it inherits from
gml:AbstractFeatureType, it has a set of additional properties like
"gml:name" and "gml:description". Those properties will appear in the
mapping file if they are mapped with a table column in the database.

The Person feature type has an ID, and a set of firstName and
lastName properties.

To explicitly map those feature types onto SQL tables, a mapping file
similar to the "Sample Explicit Mapping File" example above is needed.
That same mapping extended to include the Person feature type will
look like the example below.

Example:Parcel and Person Mapping
...
 <Mapping>
 <SQL name="wfs:Parcel" schema="TEST3">
 <Table nameSQL="PARCEL"/>
 <Primary nameSQL="IDPARCEL" type="int"/>
 <Element name="wfs:extent" nameSQL="EXTENT"/>
 </SQL>
 <SQL name="wfs:Person" schema="TEST3">
 <Table nameSQL="PERSON"/>
 <Primary nameSQL="IDPERSON" type="int"/>
 <Element name="wfs:firstName" nameSQL="FIRSTNAME"/>
 <Element name="wfs:lastName" nameSQL="LASTNAME"/>
 </SQL>
 </Mapping>
 <Info name="wfs:Parcel">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180."
miny="-90." maxx="180." maxy="90." />
 <Operations>*</Operations>
 </Info>
 <Info name="wfs:Person">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180."
miny="-90." maxx="180." maxy="90." />
 <Operations>Query</Operations>
 </Info>
 <Export generation="exportOnly">
 <Add name="wfs:Parcel"/>
 <Add name="wfs:Person"/>
 </Export>
</Mapping>

426 GML Application Schema and Mapping to Databases

In that mapping example, notice that the mapped elements are the
exported type names (Parcel and Person) and not the complex type
names (ParcelType and PersonType). This is a constraint relating to
GML3 model. For GML2 feature types, the complex type names have
to be mapped.

Now, express each parcel as owned by one or more persons. First
extend the GML schema to add a "owner" property (cardinality 1..n) to
the ParcelType type and define the "PersonPropertyType" type that will
hold the Person features. The schema becomes like in the example
below.

Example:Related Parcel and Person Feature Types
<xsd:schema targetNamespace="http://www.erdas.com/wfs"
elementFormDefault="qualified" version="0.1">
<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/featu
re.xsd"/>
 <xsd:element name="Parcel" type="wfs:ParcelType"
substitutionGroup="gml:_Feature"/>
 <xsd:complexType name="ParcelType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="IDParcel" type="xsd:integer"/>
 <xsd:element name="extent"
type="gml:SurfacePropertyType"/>
 <xsd:element name="owner" type="wfs:PersonPropertyType"
minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="PersonPropertyType">
 <xsd:sequence>
 <xsd:element ref="wfs:Person" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="Person" type="wfs:PersonType"
substitutionGroup="gml:_Feature"/>
 <xsd:complexType name="PersonType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="IDPerson" type="xsd:integer"/>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

GML Application Schema and Mapping to Databases 427

The next step consists in expressing the relation in the mapping file and
mapping it to the database tables and foreign keys. The relation itself
will be modeled using a <Relation> element in the <Mapping> tag as
defined in the "Feature Mapping Tags" appendix. For our example, the
content of this tag will be:

<Relation sourceType="wfs:Parcel"
 targetType="wfs:Person"
 source="wfs:owner"
 association="REL_PARCEL_PERSON"
 sourceSQL="IDPARCEL"
 targetSQL="IDPERSON"
 ownership="false"
 reverse="false"
/>

"wfs:Parcel" and "wfs:Person" are respectively the parent and child
ends of the relation. "wfs:owner" is the source property name. The
association table is named "REL_PARCEL_PERSON". The
sourceSQL parameter holds the name of the field in that table
corresponding with the primary key in PARCEL. The targetSQL
parameter holds the name of the field in that table corresponding with
the primary key in PERSON. The "ownership" set to false means that
when a Parcel feature is deleted, the linked Person entries will not be
removed.

In a way similar to the one..many relations not using an association
table, you need to add a mapping for the source property, like it was
done for the "hasLanes" property in the previous example. Finally, in
order to indicate that the wfs:Parcel it is involved in a relation, it is still
necessary to changing its "generation" attribute from its default value to
"relational".

The final mapping file now looks like below.

Example:Parcel and Person Relational Mapping
...
 <Mapping>
 <SQL name="wfs:Parcel" schema="TEST3"
generation="relational">
 <Table nameSQL="PARCEL"/>
 <Primary nameSQL="IDPARCEL" type="int"/>
 <Element name="wfs:extent" nameSQL="EXTENT"/>
 <Element name="wfs:owner" nameSQL="IDPARCEL" />
 </SQL>
 <SQL name="wfs:Person" schema="TEST3">
 <Table nameSQL="PERSON"/>
 <Primary nameSQL="IDPERSON" type="int"/>
 <Element name="wfs:firstName" nameSQL="FIRSTNAME"/>
 <Element name="wfs:lastName" nameSQL="LASTNAME"/>
 </SQL>
 <Relation sourceType="wfs:Parcel"
 targetType="wfs:Person"

428 GML Application Schema and Mapping to Databases

 source="wfs:owner"
 association="REL_PARCEL_PERSON"
 sourceSQL="IDPARCEL"
 targetSQL="IDPERSON"
 ownership="false"
 reverse="false"
 />
 </Mapping>

 <Info name="wfs:Parcel">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180."
miny="-90." maxx="180." maxy="90." />
 <Operations>*</Operations>
 </Info>
 <Info name="wfs:Person">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180."
miny="-90." maxx="180." maxy="90." />
 <Operations>Query</Operations>
 </Info>
 <Export generation="exportOnly">
 <Add name="wfs:Parcel"/>
 <Add name="wfs:Person"/>
 </Export>
</Mapping>

Below is a sample GML output from this WFS for the Parcel feature
type. It is clear that one or more Person types are linked to the parent
Parcel.

Example:Parcel and Person Sample GML3 Output
<wfs:Parcel gml:id="3">
 <wfs:IDParcel>3</wfs:IDParcel>
 <wfs:extent>
 <gml:Surface srsName="EPSG:4326">
 <gml:patches>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing srsName="EPSG:4326">
 <gml:pos>-71.2994186401367 42.4900390625</gml:pos>
 <gml:pos>-71.2994338989258 42.4896957397461</gml:pos>
 <gml:pos>-71.2962524414063 42.4898750305176</gml:pos>
 <gml:pos>-71.2963287353516 42.4903060913086</gml:pos>
 <gml:pos>-71.2994186401367 42.4900390625</gml:pos>
 </gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 </gml:patches>
 </gml:Surface>
 </wfs:extent>
 <wfs:owner>
 <wfs:Person>
 <wfs:IDPerson>3</wfs:IDPerson>
 <wfs:firstName>Bernard</wfs:firstName>
 <wfs:lastName>Snyers</wfs:lastName>

GML Application Schema and Mapping to Databases 429

 </wfs:Person>
 </wfs:owner>
</wfs:Parcel>

Note: In such an association of feature types, you can run WFS
GetFeature requests with a filter applying on a property of the child type.
The request below searches for Parcels owned by Persons among
which at least one is named "Dimitri".

<ogcwfs:GetFeature maxFeatures="20"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ogcwfs="http://www.opengis.net/wfs"
 xmlns:wfs="http://www.erdas.com/wfs"
 version="1.1.0"
 service="WFS" >
 <ogcwfs:Query typeName="Parcel">
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>

<ogc:PropertyName>owner/Person/firstName</ogc:PropertyName>
 <ogc:Literal>Dimitri</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 </ogcwfs:Query>
</ogcwfs:GetFeature>

The complete mapping and schema files for this example are available
in the distribution, under the data/erdas-apollo/db/oracle/ParcelPerson
directory. They should be copied to config/erdas-
apollo/providers/vector so that they can be referenced by their name in
the providers.fac . The SQL instructions to build the tables and data are
also provided.

Limitations and Extensions

WFS Transactions on Complex Features:

When a feature has a complex property (i.e. a property of cardinality
larger than 1, or a property which has sub-properties), an Update
transaction cannot apply on a part of that property (i.e. an item of the
collection or a sub-property). It is necessary to update the whole
property: the property will be deleted and re-inserted with its new
content.

Mapping of
Enumerations

Regardless of the type of mapping used, it is useful to have properties
which values are taken from a list instead of being a "wild" string.
ERDAS supports two types of enumeration: XML Enumerations when
the list of values is defined in the GML Application Schema and
Relational Enumerationsd when the list of values is stored in a table in
the database. This sections explains how to configure your
enumeration type so that it will be transparently treated as such.

430 GML Application Schema and Mapping to Databases

XML Enumerations

The three key elements to configure an XML Enumeration property are:

• Defining a type holding the list of values

• Declaring the type of the property, with a multiple cardinality

uTelling the mapping file that the property is an enumeration

Based on a basic example, here is the illustration on the configuration
steps needed for setting up an XML Enumeration. The example used
the BOSTON_ORA "BUSINESS" feature type on which a "Nature"
property is added. The allowed values for this property are: SCHOOL,
HOSPITAL, JAIL, HOME, Restaurant, RESTAURANT, Library and
LIBRARY. So, we define a simple XML type deriving from "String",
which values are those listed. The XML Schema code to add into the
boston_ora.xsd file is:

<xsd:simpleType name="NatureType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SCHOOL"/>
 <xsd:enumeration value="HOSPITAL"/>
 <xsd:enumeration value="JAIL"/>
 <xsd:enumeration value="HOME"/>
 <xsd:enumeration value="Restaurant"/>
 <xsd:enumeration value="RESTAURANT"/>
 <xsd:enumeration value="Library"/>
 </xsd:restriction>
</xsd:simpleType>

Then, you have to add a property to your feature type, using the above
type, and with a cardinality of more than 1. For the BUSINESS feature
type, we give the name "Nature" to this property and we define it as
below:

<xsd:element name="Nature" maxOccurs="unbounded" nillable="true"
type="wfs:NatureType">

That constraint on the cardinality can look artificial, but it is
necessary in order to let the service consider the property as
needing an additional resolution step when storing or retrieving it.
If the cardinality is left to 1, Inserts will fails due to unsufficient
column width and retrieval will show the key instead of the value.
In fact, after inserting enumerated values in the data source, you
can notice that it will store a single character. This also means that
you are limited to a list of 86 values for the enumeration,
corresponding to the following character sets: A..Z, 0..9, a..z,
!"$&()*+,./:;<=>?@[]{}|

GML Application Schema and Mapping to Databases 431

Now, you have to map your property to a database field, and tell it that
it is an Enumeration. Adding a property to be mapped is classically
achieved by adding an <Element> tag. Declaring it as an enumeration
is done by adding a <Enumeration/> to the Element. For the Nature
property of the BUSINESS feature type, mapped to a "NATURE"
column, the declaration looks like:

 <Element name="wfs:Nature" nameSQL="NATURE">
 <Enumeration/>
 </Element>

The "NATURE" field is defined in the database as a string with a size of
1 or more.

Various limitations:

Transactions (WFS-T operations): you can insert, update or delete
features from your WFS but when inserting or updating, you have to use
values that are part of the enumeration.

Filters: property values which are defined in an XML Enumeration can
be used in search criteria, but only for exact match operators: Equals or
Differs.

Relational Enumerations

This type of enumeration uses a database table to store the
enumeration values. This solution is generally applied either when you
already have sets of values stored in a separate table, or when the set
of values goes beyond the limit for XML Enumerations.

The main steps needed to configure a Relational Enumeration property
are:

• Declare a simple XML Type in your schema, for that property

• Add the mapping of this property in your mapping file

• Add a <RelationalEnumeration> element in the mapping file to link
with the database

Once again, we take the BOSTON "BUSINESS" feature type example
to explain and illustrate the configuration. If we consider the BUSINESS
feature type is mapped with a relational table in a database, we can as
well consider that a second table, named CITIES, exists, to hold the
State and City code of the cities. Our job is to add a "CityCode" property
to the BUSINESS feature type, ensuring that the values for that
property are taken from the CITIES table. The SQL code to create the
CITIES table can be:

432 GML Application Schema and Mapping to Databases

CREATE TABLE CITIES
(
 CITY_ID VARCHAR2(20 BYTE) NOT NULL,
 CITYCODE INTEGER
);

Declaring a CityCodeType simple type in the schema and adding a
"CityCode" property with this type to the BUSINESS feature type is
rather straight forward:

...
 <xsd:simpleType name="CityCodeType">
 <xsd:restriction base="xsd:integer">
<!-- those enumeration elements are fake -->
 <xsd:enumeration value="108"/>
 <xsd:enumeration value="132"/>
 </xsd:restriction>
 </xsd:simpleType>
...
 <xsd:element name="CITY" minOccurs="0" nillable="true"
type="xsd:string">
 </xsd:element>
 <xsd:element name="CityCode" minOccurs="0" nillable="true"
type="wfs:CityCodeType">
 </xsd:element>
 <xsd:element name="TELEPHONE" minOccurs="0" nillable="true"
type="xsd:string">
 </xsd:element>
...

In the database, a new column has to be defined for the BUSINESS
table. We name it "CITYLINK". Its must hold the same type as the key
column of the CITIES table. And if your RDBMS supports constraints,
you can link the BUSINESS.CITYLINK field with the CITIES.CITY_ID
key column.

Then, that CITYLINK column is mapped with the "CityCode" property in
the mapping file:

...
 <Element name="wfs:CITY" nameSQL="CITY"/>
 <Element name="wfs:CityCode" nameSQL="CITYLINK"/>
 <Element name="wfs:TELEPHONE" nameSQL="TELEPHONE"/>
...

The last operations consists in telling the WFS that the CityCode
property contains a Relational Enumeration stored in the CITYCODE
column of the CITIES table linked by the CITY_ID key column. This is
achieved by adding a <RelationalEnumeration> element in the mapping
file, with four attributes holding the types or columns mentioned above.
For the CityCode property, it can look like:

<RelationalEnumeration

GML Application Schema and Mapping to Databases 433

 name="wfs:CityCodeType"
 nameSQL="CITIES"
 pkey="CITY_ID"
 column="CITYCODE"
/>

If the mapping file does not declare any <Export> tag, all the types
defined in the XML schema will be disclosed in the WFS capabilities
document. Adding an Export clause prevents the simple types from
being exposed:

<Export generation="exportOnly">
 <Add name="wfs:BUSINESS"/>
</Export>

Remarks:

In the <RelationalEnumeration> tag, the "name" attribute addresses a
simple XML type, not a feature type. So, you HAVE to define a simple
type as one side of the link, and then use that type for one or more
properties in your feature type.

The type must be the same between the simple type (here, an integer)
and the column types in the corresponding table columns (here, the
CITYCODE column is INTEGER).

The type of the column in the feature type table must NOT have the type
of the values. It must have the type of the key field in the values table
(here, String(20)).

Limitations and Extensions

Various limitations:

Transactions (WFS-T operations): you can not execute transactions on
a feature type containing one or more properties defined by a Relational
Enumeration if that property is not of type String. This is due to the fact
that the value is used as key for reverse-resolving the row ID and that
key is a string.

Filters: property values which are defined in an Relational Enumeration
cannot be used in search criteria, except if they are defined as strings.
And in all cases, the filters can only use exact match operators: Equals
or Differs.

Extension:

434 GML Application Schema and Mapping to Databases

The table containing the values can also contain other columns which
can participate in the search. This feature allows to give alterate values
to each row (a string in another language, for example) and have those
values taken into account in the search phase. Note that the output
value is taken from the first column.

In practice, you just need to mention one or more additional columns in
the RelationalEnumeration.column attribute, so that it could look like:
column="CITYCODE,EUCODE,USCODE" .

How to Control Mapping
Correctness

If a syntax error is encountered by the WFS service in its mapping file,
either the global service will refuse to start or the provider will not be
accessible.

Requesting the capabilities of the provider and checking its content
verifies that the content of the <Info> section is valid.

To check whether the <SQL> section of the mapping file is valid, run a
getFeature request on the given feature type. A request failure or a
wrong result (missing properties, invalid ID, wrong geometries) will
denote incorrect mapping information. This error message may be:
java.sql.SQLException : ORA-00904 : invalid column name.

If a single document defining the feature type schemas and the
mapping is required, be aware that the definition of the feature type
must be done before the mapping for a given feature type. Otherwise,
an error message of type: "Unable to generate template based on
wfs:RoadType or the type wfs:RoadType is unknown. (Think to check
the prefix and the default namespace)." will be received

Moving to GML3 This section aims to clarify what parts of GML3 is supported in ERDAS
APOLLO, and how to adopt it or migrate services to that new
specification.

ERDAS APOLLO support
of GML3

There are five major reasons why ERDAS made the huge investment
to support the new OGC GML3 specification:

• More and more data providers expressed the wish to publish WFS
services with complex data types and GML2 does not provide the
appropriate framework to achieve it

• The OGC WFS 1.1.0 specification provides a good set of new
features, but that specifications makes GML3 support mandatory

• GML3 defines new types of geometries which were not
standardized before, e.g., Arc, Curve and Surface.

GML Application Schema and Mapping to Databases 435

• GML3 defines new feature types in order to increase the
standardization of vertical models: temporal, units of measure and
coverages are just a few examples

• The new property-value model, at the heart of GML3, allows a much
clearer semantic for readers of GML3 documents especially for
complex properties.

GML3 Concepts and
Schemas

Before reading the GML 3.1 specification, be familiar with the GML
concepts as the document has more than 500 pages. Specification can
be downloaded from the OGC web site.

There are some shortcuts to understanding the GML3 and being ready
to use it:

• From the GML 3.1 specification (numbered 03-105r1), read
chapters 21 and 23, which are guidelines to using GML3 schemas.

• ERDAS has configured a sample GML3-based WFS, named
ATLGML3_SHAPE, relying on the usual configuration files (types
and mapping). Browse those files and send WFS 1.1 requests to
that WFS to see how the schema is defined and how the GML3
output is structured.

• When comfortable, migrate the services to the GML3. The next
section explains how to achieve this.

Setting Up a ERDAS WFS
Serving GML3

There are several ways to prepare a GML3-based WFS.

The first situation is whether a GML3 schema already exists, and a
WFS is to be built on top of it. This is fast, as only the mapping file and
the SQL scripts need to be built in order for the database to be
generated. This can be done using one of the "Schema Generator"
command-line tools provided as part of the ERDAS APOLLO
distribution. It currently only applies to Oracle and Postgres provider
types.

The second situation is if a database ready, and the mapping and the
schemas to be are to be constructed. The "From SQL Generator"
command-line tools will do the work. Just make sure to provide the "-
gml3" option to the script so that GML3-compliant schemas will be build.

The third situation is if a set of WFS providers is up and running, and
they are to be transformed so that they will properly respond to GML3-
based requests. This migration can be done in a few steps explained in
the next section.

436 GML Application Schema and Mapping to Databases

Migrating a GML2 WFS to
GML3

Assuming that there is an entry in the WFS providers.fac and this entry
references a schema file (through the "types" parameter) and a
mapping file (through the "mapping" parameter). If the provider is to
become GML3-compliant, the providers.fac does not have to change,
the servlet will analyze the types and mapping files and decide to
enable GML3 or not.

The types file should be changed:

• The import clause for the "feature.xsd" schema has to be relocated.
Its value is probably one of:

<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://www.opengis.net/namespaces/gml/core/feat
ure.xsd"/>

or

<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://schemas.opengis.net/gml/2.1.2/feature.xs
d"/>
It should become:
<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/featu
re.xsd"/>

Note that the following import is also GML3-valid:

<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://www.opengis.net/namespaces/gml/base/feat
ure.xsd"/>

• If the feature types hold complex properties, i.e., properties whose
value is not a simple one like string, date, integer, those property
definitions have to be adapted to match the GML3 property model.
Such a property cannot have more than one value and this value is
likely to be remote. So, it has to be split into a 2-level definition. The
top level is the property name and the underlying level is the
property value. It will often lead to defining a new complexType in
the schema.

The mapping file has to be adapted to match the following rules:

• If the gml namespace is included, it has to be relocated to the same
URL as for the types file.

• The <SQL> tag holding the feature type name has to map the global
element name not its complex type as with GML2 mapping. So, if
there is a feature type named "Parcel" whose XML type is
"ParcelType" the GML2 mapping file mentions "ParcelType" in the
SQL name attribute. Replace it with "Parcel".

GML Application Schema and Mapping to Databases 437

• If mapping the gml:name and/or the gml:description properties of
the feature type to a column in a table, add the compatible="gml2"
attribute in the <SQL> element to by-pass the GML3 redefinition of
those property types.

This action is needed because with GML3 the gml:name property has
a cardinality of 0..n and has an optional "codeSpace" attribute. To be
able to map it to a simple string, tell the servlet should be instructed to
keep that the GML2 behavior. The GML3 output of the service will
remain valid. That action also has to be taken if the gml:description
property is to be mapped to a simple string, as its GML3 definition
allows it to be either a simple string or a reference to a remote value.

• If the mapping does not take advantage of any of the properties
inherited from AbstractFeatureType, set the "compatible" attribute
to "pure".

Some more advanced rules also apply, but as they relate to particular
case, they will be treated on a case-by-case basis.

Setting Up a ERDAS WFS
Serving GML-SF (Simple
Feature)

For a WFS to server features matching the GML Simple Feature Profile
(also known as Level 0), you need to import the feature schema ending
with "gmlsf.xsd". So, the import clause could look like:

<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://schemas.opengis.net/gml/3.1.1/profiles/g
mlsfProfile/1.0.0/gmlsf.xsd"/>

You can build that schema manually or produce it with the "From-SQL
Generator" tool, taking care of setting both parameters: -gml3 and -cl
<n> where <n> is the level of GML-SF compatibility. <n> being any of
0, 1 and 2 currently produce the same result.

438 Feature Mapping Tags

Feature Mapping Tags
This appendix presents the detail of the configuration XML tags. They
are divided in several sections, for each type of information:

• The <MAPPING> section

• The Metadata <INFO> section

• The Capabilities Feature Type section <EXPORT>

• The <COLLECTION> section

• The <OPTION> section

• The <UserFunction> section

• The <UnitDefinition> section

• The <UnitAssociation> section

• The <WMS> section

Mapping Section
<MAPPING>

This section lists and briefly describes each of the XML tags that can
appear in the mapping section document.

Table 43: The Mapping Tag

Element
(* means multiple occurrences)

Allowed
Parent

Attributes Description

Mapping document root the root element of the mapping (1)

Table 44: The SQL Tag

SQ
L

Mapping defines the mapping associated to a feature type. (2)

name the name of the feature type to map or the template name to use for 'sql'
generation. If using "%" , all tables found in the associated source will be
mapped, including System tables if the user is allowed to view them.

Feature Mapping Tags 439

generation specifies the kind of mapping.

• specific: the specified elements are mapped (default)

• auto: the element mapping is automatically generated

• sql: the type is created from the database

• relational: to map related tables onto a single feature type

• autogen: same as "auto" mapping but can be changed manually

• simple: same as specific without capability of mapping complex types
onto a complex SQL type.

schema used when generation=sql. It specified a template for the schema/user to
address. If not specified, the null value is used leading to processing all
schemas available to the user.

compatible used to force the mapping be compatible with GML2. Allowed values are
pure or gml2. 'pure': the parent gml:AbstractFeatureType is considered
empty. 'gml2': the gml3 type is made compatible with GML2. (gml:name
and gml:description properties are considered simple strings with
cardinality maximum of 1)

Table 44: The SQL Tag (Continued)

Table 45: Sub-Elements of the SQL Tag

Table SQL defines the mapping of a type to a table

nameSQL the table name

alias a possible table alias to use in query generation

user a schema name if the table does not belong to the
current schema (Oracle only)

TableScale Table defines the set of alternative tables to invoke based
on the scale from the request. There can be 0 to n
instances of <TableScale> elements.

scaleMax defines the maximum scale at which the current Table
is invoked (inclusive). Default is infinity.

scaleMin defines the minimum scale at which the current Table
is invoked (inclusive). Default is 0.

nameSQL the table name

user A schema name if the table does not belong to the
current schema

alias a possible table alias to use in query generation

Primary SQL (3)

440 Feature Mapping Tags

name or nameSQL the column name of the primary key. Several columns
can be given (comma separated)

fid can have one of the following values:

• true: the primary key matches the XML ID
requirements, so no encoding is needed

• auto: the primary key is generated by the database
(for insert operation)

The fid="auto" option is not supported for
PostgreSQL/PostGIS as this DBMS does not support
the unique identifier auto-generation option. Oracle
does, based on UUIDs.

• false: the primary key doesn’t match the XML ID
requirements

• generated: the primary key is generated by the wfs
(as a long or a string)

type a comma separated list of the type of each column
(schema type).If not specified, default to xsd:string,
unless 'auto' is specified for fid

allowInsertId if set to true (default is false), the feature IDs are kept
(if present) during Insert operations. This is mainly
intended to transfer features from one WFS to
another.

NoPrimary SQL Sets no mapping for the primary key. It will lead to
absence of "fid" in the outputs.

Foreign SQL defines the mapping of the foreign key in auto
mapping

nameSQL the column name of the foreign key (used in auto
mapping)

Element * SQL defines the mapping of one element

name the name of the element to map (the feature element
name)

nameSQL the column name (not required in auto mapping)

typeSQL the type of the column (only required for Object and
Array types)

force Optional field. The only allowed value is "mandatory".
It forces the element to have a minimum cardinality of
1 and to become nullable. This is mainly used when
there are several optional geometries in a type to
force the mapped ones to become mandatory. This
helps retrieve the default geometry property.

Table 45: Sub-Elements of the SQL Tag (Continued)

Feature Mapping Tags 441

measure Optional measure unit name. See <UnitDefinition>
and <UnitAssociation> sections below.

nameSQLCol2 the name of the second column (not required in
automatic mapping) used to map the end time of a
TimePeriod.

Attribute * SQL,
Element

defines the mapping of one attribute

name the name of the attribute to map (the feature element
name)

nameSQL the column name

Geometry * SQL defines the mapping of a geometry element (used in
databases that do not have geometry data types)

name the name of the geometry element

nameSQL the comma separated list of column names (this
defines the mapping of a point)

dontCheckName if set to true (the default is false) the column names
are not checked for characters requiring the use of
quote

filterName the column name to use in filter expression, default is
to use the nameSQL value

functionName the name of a function which is used on the select
part and enclosed the nameSQL (mainly applies to
MySQL, the function name being "asText")

Lock SQL defines the mapping of the lock field

nameSQL the column name

MapGen SQL defines the specific mapping for generation of
GetMap (see the Advanced Configuration appendix).
There can be 0 to n instances of <MapGen>
elements.

scaleMin defines the minimum scale at which the current
MapGen applies (inclusive). Default is 0.

scaleMax defines the maximum scale at which the current
MapGen applies (inclusive). Default is infinity.

MapGenFor-
mat

SQL PCDATA the content of this element is a list of formats for
which the MapGen capability is disabled. Several
separators can be used - among them are comma,
blank, carriage return and line feed. Formats are
case-insensitive and are expressed as HTML, GML,
SVG, XML, ...

Field * MapGen defines the properties to output.

Table 45: Sub-Elements of the SQL Tag (Continued)

442 Feature Mapping Tags

name the name of a database column name to use.

PCDATA a string that will replace the column name in the
underlying request. Optional.

Where MapGen a where clause which will be added (with an And) to
the underlying request. Optional, and only applicable
to providers using a SQL query language (Shapefiles
do not!)

Last MapGen an ending clause that will be added to the underlying
request (typically, a group by or a sort order).
Optional, and only applicable to providers using a
SQL query language (Shapefiles do not!)

NoIdGenera-
tion

MapGen prevents computation of the feature identifier, when it
is irrelevant.

NoQueryGen-
eration

MapGen if specified, no query will be sent to the data source
for the specified scale range

Relation Mapping defines a relationship between two types (a source
type has a relation with a target type). The relation is
not used in the "auto" mapping. The relation must be
defined after the mapping of both types. It can be
noticed that in case of a many-to-many relationship,
targetSQL and sourceSQL contain the primary key of
the sourceType and targetType.

sourceType the name of the source type of the relation

targetType the name of the target type of the relation

source the name of the source element in the source type

target the name of the target element in the target type -if
not specified, in a one-to-x relationship, the
targetSQL field is used and if not defined, it defaults
to the primary key

association the name of the association table (used only for
many-to-many relationships). In this case, the types
of the field must be the types of the primary keys of
the source and target types.

targetSQL the name of the target field either in the target type or
in the association table.

sourceSQL the name of the source field in the association table
(used only for many-to-many relationships)

Table 45: Sub-Elements of the SQL Tag (Continued)

Feature Mapping Tags 443

ownership indicator of ownership. Implies cascaded deletions of
the related objects. (In case of a many-to-many
relationship, the delete occurs only in the association
table) The possible values are: false = no automatic
delete occurs true = the source owns the related
objects, so they are deleted.

reverse a boolean used in a many-to-many relationship to
automatically add the reverse relationship (the default
is false)

targetTable the name of another table holding the relation data

RelationalEnu-
meration

SQL build a mapping between a simple type and a table of
values. The table of values has a primary key and
several columns with at least one containing values.
The logic is to store the primary key of a value in the
feature table instead of the value. Note that the SQL
type of the primary key and the SQL type of any
elements of the mapped type must match. As the type
is mapped, this is valid for all elements of this type. If
you have a element of the enum type which has a
max cardinality > 1, it will not work

name the name of the simple type to map. It is usually an
enumeration type.

nameSQL the name of the SQL table containing the value

pkey the name of the primary key

column a comma-separated list of column names containing
some values

Table 45: Sub-Elements of the SQL Tag (Continued)

Table 46: Sub-elements of the Element tag

Type * Ele-
ment

defines the types used in a collection

name the type name

Blob Ele-
ment

mark the element to be stored as a blob (the element should be a
collection)

HandleFID Ele-
ment

mark the collection elements to handle its own FID. It implies that the
WFS does NOT recognize this FID as a valid FID of get feature
request

444 Feature Mapping Tags

Metadata Section
<INFO>

Expresses the metadata and helps the system to be compliant.

"PCDATA" means "Any String" e.g., a title can be any free text.

Enumeration Ele-
ment

mark the collection elements to use an enumeration mapping where
the collection is mapped onto a string. Each character of the string is
one element of the collection. This tag has no effect if the element is
not a collection. This reduces the query done to insert/retrieve the
feature and allows to use the property in the filter like a simple
property.

Table 46: Sub-elements of the Element tag

Table 47: The Info Tag

Element (* means multiple
occurrences)

Allowed Par-
ent

Attributes Description

Info Document root the root element of the information section
(2)

name the type name linked to the information (7)

base the name of the parent type whose info
should be inherited by this type info

Table 48: Sub-Elements of the Info Tag

Title Info PCDATA defines the title associated to the type and
exported in the capabilities

Abstract Info PCDATA defines the abstract associated to the type
and exported in the capabilities

SRS Info PCDATA defines the list of supported SRS,
separated by a space. The first SRS is the
internally used one (4).

overwrite boolean value (true, false) defining if the
list of SRSs exposed in the capabilities
document is exclusively composed of the
current list or if the SRSs coming from the
data are added. Default: false.

BoundingBox * Info defines the bounding box

SRS the box SRS

Feature Mapping Tags 445

minx the X value of the lower left point

miny the Y value of the lower left point

maxx the X value of the upper right point

maxy the Y value of the upper right point

Operations Info PCDATA defines the supported operations as a
comma separated list. Allowed values are
*, # , Insert, Delete, Update, Lock, Query
and Native. Warning: some operations
may not be supported by all connectors. "*"
means all operations. # means Query,
Insert, Delete, Update.

If not defined, the default is "Query". (5)

Dimension * Info as ERDAS WFS Servlet is also able to
support the WMS Specification, this tag
describes the behavior of the getMap and
publishes the dimension and extent for
conformance to WMS Specification. (6)

name the dimension name that will be published
in the WMS capabilities document. It must
be prefixed with DIM_ in the requests,
except for TIME and ELEVATION

property the feature property name (default is
name)

unit the unit name (mandatory attribute, value
cannot be empty)

symbol the symbol name

default the default value (optional)

PCDATA the extent: see (6)

Metadata Info PCDATA the template url of the metadata url (see
MetadataURL section in Advanced
Configuration appendix). If this string is
empty, the DefaultMetadata option is used.
If this one is also empty, the provider
global default is used.

type the type of the metadata (default is TC211)
Acceptable values are TC211, FGDC,
19115, 19139.

Table 48: Sub-Elements of the Info Tag (Continued)

446 Feature Mapping Tags

Legend Info PCDATA the template url of the legend url (see
LegendURL section in Advanced
Configuration appendix). If this string is
empty, the DefaultLegend option is used. If
this one is also empty, the provider global
default is used.

LegendConfig Info,Option This options allows to configure the output
produced by the GetLegendGraphic
through SLD rules. This element can be
either in tho Info section for a single
feature type, or in the Option section for
global application. <LegendConfig
outline="true" width="30" height="40"
fontsize="40"/>

width, height the width and height of the drawing area
(default width is 18, default height is 12)

widthOffset the offset between the image border and
the drawing area (default 5)

offset the y space between two drawing areas

textRightOffset the offset between the text and the image
border (default 5)

textBottomOffset the offset between the bottom of the
drawing area and the text (default 3)

fontSize the text font size in points (default 10)

fontName the text font name (default Arial)

fontStyle the text font style (use bold for a bold font,
defaults to normal)

outline boolean. If set, an outline is drawn around
the drawing area (default false)

outlineColor the color of the outline (default black)

textColor the text color (default black)

backColor the image background color (default is
white). Used only if not present in the
request

scale the scale factor to apply when drawing
(default 4). It means that the rule is drawn
scaled up and down , e.g the marker size
will be reduced by the scale factor.

Table 48: Sub-Elements of the Info Tag (Continued)

Feature Mapping Tags 447

* means multiple occurrences

• An occurrence of the "Mapping" element can appear for each
feature type. A single element can group several feature type
mappings.

• For a given feature type, if its schema is in the same file as the
mapping, the <SQL> and <Info> tags for this feature type must
appear after the schema.

• In common situations, the "Primary" element is mandatory. If not
mentioned, the "fid", which value is based on this element, will not
be permanent. Moreover, this element is the only one allowed for a
mapping of type "sql".

• In the case of an Oracle Spatial database, the value of the first SRS
will be matched with the SRID given in the
USER_SDO_GEOM_METADATA table, whatever value it has.

• Operation "Native": This declaration indicates that in the capabilities
document the <Native> element (see WFS 1.0.0 spec) is supported
by the WFS.

In the case of ERDAS, the attributes vendorId and safeToIgnore for this
element are ignored. The content of the element is directly passed
through as a Transaction to the JDBC source. No response is returned.
That means that for a SQL request, a SELECT order will provide no
data back. However, a CREATE, an INSERT or a DROP will do
something.

Queryable Info PCDATA defines if the WMS layer built on top of the
feature type can be queried. The default
value is "true". So, this tag clears the
queryable flag for the given layer.

ScaleHint Info defines the scale hint to give to WMS
layers. Not that the <ScaleHint> element
will be automatically computed if a
<MapGen> element exists for this layer.
However this one always takes
precedence

<ScaleHint scaleMin="10000"
scaleMax="50000"/>

scaleMin defines the minumum scale (default 0)

scaleMax defines the maximum scale (default is
max)

Table 48: Sub-Elements of the Info Tag (Continued)

448 Feature Mapping Tags

This operation does not enforce the interoperability concept and is a
threat as it allows the database to be altered.

For the ERDAS WFS, the JDBC-type data sources are the only ones
that support that "native" operation, i.e. Oracle, Oracle OCI, Postgres,
DBF, ODBC and MS-Access. The Shapefiles and ArcSDE connectors
do not support it.

• Dimension:

First, it allows the publishing in the WMS capabilities document one or
more <Dimension> and <Extent> tags for one or more of the layers.
Then based on this information the client application can insert into its
WMS requests (GetMap and GetFeatureInfo) other parameters that
provide additional filters to the data. It somehow resembles the WFS
<Filter> for a WMS.

Extract from the WMS 1.1.1 capabilities DTD for the <Dimension> and
<Extent> tags:

<!ELEMENT Dimension EMPTY >
<!ATTLIST Dimension
 name CDATA #REQUIRED
 units CDATA #REQUIRED
 unitSymbol CDATA #IMPLIED>
<!-- The Extent element indicates what _values_ along a dimension
are valid. -->
<!ELEMENT Extent (#PCDATA) >
<!ATTLIST Extent
 name CDATA #REQUIRED
 default CDATA #IMPLIED
 nearestValue (0 | 1) "0">

Configuration: The <Dimension> and <Extent> tags will appear in the
WMS capabilities, as soon as a <Dimension> tag is declared in the
<Info> block of the WFS mapping file. The attributes to give to this
<Dimension> tag are:

• name: The name that will appear in the capabilities document for
the elements <Dimension> and <Extent>. It is also the name to use
in the WMS requests, prefixed with DIM_ (except for TIME and
ELEVATION).

• property: the property name of the feature type.

• unit: A character string indicating the type of unit of the property.
This value is not checked by the ERDAS WFS. It is only used to
provide the necessary information in the capabilities document as
the "units" attribute. This attribute is mandatory. Example:
kilometer, m, second, time, etc.

Feature Mapping Tags 449

• symbol: will produce the "unitSymbol" attribute in the <Dimension>
element of the capabilities. This attribute is optional.

• default: A default value to use if the request does not mention this
dimension as parameter. If no value is defined, the request will do
no filtering on this property. This value will also be used for the
"default" attribute of the <Extent> element in the capabilities. This
attribute is optional.

The element to insert as PCDATA in the <Dimension> tag is a character
string representing the list or range of allowed values. It uses the syntax
described in Appendix C of the WMS 1.1.1 spec: value or
value1,value2,value3 or min/max/resolution or
min1/max1/res1,min2/max2/res2. For example, a list of values
"A,C,F,G,W" or a range of values: "10/100/2". The value "?" has no
particular meaning and should not be used. This value will appear in the
<Extent> element in the capabilities. It is not checked by the WFS.

Examples:

<Dimension name="FC" property="GNS_FC"
unit="">A,H,L,P,R,S,T,U,V, </Dimension>

<Dimension name="SCALELEVEL" property="LEVEL" unit=""
default="0">0,1,2</Dimension>

<Dimension name="TIME" property="TIME" unit="ISO8601"
default="1999-01-01/1999-01-07/P1D">1999-01-01/2003-12-
31/P1D</Dimension>

• SRS and BoundingBox priority rules:

The <SRS> tag defines the reference system(s) supported by the WFS.
The first in the list refers to the internal SRS. The <BoundingBox> tag
defines the server box. It is used to calculate the LatLonBoundingBox
found in the capabilities document. The information given in the <Info>
tag for an explicitly named feature type has priority and replaces the
information extracted from the database. The SRS and BoundingBox
tags are treated independently from each other. This means that if a
BoundingBox but no SRS is given in the database, the bounding box
will be associated with the SRS given in the <Info> tag.

An anonymous <Info> tag, i.e., with no feature type name, will
complement the information obtains from the database, but does not
replace it.

If the SRS and the BoundingBox are not mentioned in the database or
in the <Info> tag, the values taken are WGS84 (EPSG:4326) and (-
180,-90,180,90).

450 Feature Mapping Tags

Capabilities
Feature Type
Section:
<EXPORT>

This sets the FeatureTypes presented to the world.

Collection Section:
<COLLECTION>

This tag permits the remaining of the root element produced by a
getFeature request. The default is "featureCollection", but may be
renamed, if needed using this tag.

Table 49: The Export Tag

Element (* means
multiple occur-
rences)

Allowed
Parent

Attributes Description

Export Document
root

the export section defines the types which are
really declared in the capabilities document

generation the value can be:

• mapped: mapped types are exported if they are
not explicitly removed, added types are also
exported

• exportOnly: only explicitly exported types are
exported

Table 50: Sub-Elements of the Export Tag

Add * Export

Name the type name to add

Remove * Export

name the type name to remove

Table 51: The Collection Tag

Element (* means
multiple occur-
rences)

Allowed
Parent

Attributes Description

Feature Mapping Tags 451

Options Section:
<OPTION>

The tags belonging to this section have several goals, but apply to all
feature types.

Collection Document
root

Name the type name to use as collection or as member
element.

• If the type name is not of type Association, the
type name will be used as collection. The
typename can be a global element or a type. (The
first element whose type is Association will be
used as feature Member)

• If the type name is of type Association, the
collection element is unchanged, and the member
element is replaced with this one.

Table 51: The Collection Tag

Table 52: The Option Tag

Element (*
means multiple
occurrences)

Allowed
Parent

Values Description

Option Document
root

A set of options applying to all feature types

AgressiveSQL-
Mapping

Option gml2,
gml3

This option specifies the use of an agressive method to compute
the geometry type from SQL."gml2" is for GML2 types, "gml3" for
GML3 types. The option may also be specified in the
providers.fac file as an provider property. This is not always an
accurate method. (Default: disabled)
<AgressiveSQLMapping>gml2</AgressiveSQLMapping>

AllowDeprecate
dGML3

Option true, false Allows the output of deprecated GML3 geometries, lighter than
the new ones, when the actual geometry complies. Default: false.
<AllowDeprecatedGML3>true</AllowDeprecatedGML3>

AllowFullDis-
tanceEmulation

Option true, false This option, if set, emulates the distance sort for the output of the
WMS GetFeatureInfo request. If not set, the system assumes the
closest feature is returned first by the provider. (Default: false)

AllowLaxGMLM-
odel

Option true, false If set, the model verifier will be a little more permissive. Among
others, it will allow attributes for GML3 properties. (Default: false)

AllowLaxPars-
ing

Option true, false This option allows the GML reader included in the WFS to tolerate
some minor errors (like entering invalid enumeration values...).
(Default: false). <AllowLaxParsing>true</AllowLaxParsing>

452 Feature Mapping Tags

AlwaysGener-
ateLegend

Option true, false If set, the default legend template is used even if no Legend tag is
defined: the LegendURL tag is forced in the capabilities document
(Default: false).
<AlwaysGenerateLegend>true</AllowGenerateLegend>

AlwaysGener-
ateMetadata

Option true, false If set, the default metadata template is used even if no Metadata
tag is defined: the MetadataURL tag is forced in the capabilities
document (Default: false).
<AlwaysGenerateMetadata>true</AllowGenerateMetadata>

CheckSome-
thingLocked

Option true, false It applies to WFS transactions. If set, the WFS will check that
something is locked (or unlocked) before processing a delete or
update request. The default value is false. Warning: if set, any
request to delete unexisting features while no other feature is
locked will return an error message.

Compute-
BoundedBy

Option true, false This allows the WFS to compute the <gml:boundedBy> content
for each feature if not provided. (Default: false).
<ComputeBoundedBy>true</ComputeBoundedBy>

ConformToSim-
pleFeaturePro-
file

Option 0,1,2 This option forces the schema produced with an SQL Mapping to
conform to the OGC-GML Simple Feature Profile. (Default: not
set). The value of the option is the conformance level (0,1,2).
<ConformToSimpleFeatureProfile>0</ConformToSimpleFeatureP
rofile>

DefaultDPI Option positive
number

The default dpi to use in the renderer for GetMap operations

DefaultLegend Option string Defines the default path template for legend files location

DefaultMetadata Option string Defines the default path template for metadata files location

DoNotRewrite-
SchemaLoca-
tion

Option true, false This option prevents the WFS from rewriting the schema location
with a location relative to itself. Default is false.

DontEmbedSVG Option true, false If true, requests not to embed SVG images/symbols but produce
external url instead

DoStreamGML Option true, false This options allows the WFS to output the produced GML as a
continuous stream without doing internal copy. So It requires less
memory and there is no need for the MaxMemorySize option to
produce large output. Restriction: It implies to envelope
computation. (Default: false).
<DoStreamGML>true</DoStreamGML> (This option is provided
in Beta state)

EncodingChar-
set

Option encoding This specifies the charset used to encode the GML response, the
GetCapabilities response and the DescribeFeatureType
response. (Default: utf-8). <EncodingCharset>iso-8859-
1</EncodingCharset>

Table 52: The Option Tag (Continued)

Feature Mapping Tags 453

ShapeEncod-
ingCharset

Option encoding This specifies the charset used to encode the SHAPE response
to a GetFeature. (Default: utf-8).
<ShapeEncodingCharset>iso-8859-1</ShapeEncodingCharset>

FilterAlphaMin Option positive
integer

This option is used during generation of 8 bits images (GIF or
PNG8). It defines the minimum alpha value to be non-transparent.
(Default: 128). <FilterAlphaMin>80</FilterAlphaMin>

FilterDistance-
Min

Option positive
integer

This option is used during generation of 8 bits images (GIF or
PNG8). It defines the minimum distance to be distinct from the
reference color. (Default: 1000).
<FilterDistanceMin>500</FilterDistanceMin>. Note: the value is
the square of the distance and will be compared with dR*dR +
dG*dG + dB*dB .

FollowEPSGDef Option true, false This option forces the WFS to follow the order of axis defined by
EPSG when an EPSG SRS is used. It mainly applies to
geographic projections, for which EPSG sets the latitude-
longitude order and some OGC specifications set the longitude-
latitude order. (Default: false)
<FollowEPSGDef>true</FollowEPSGDef>.

GenerateUpper-
Case

Option true, false If true, sets the use of uppercase in AUTO mapping mode

Generate8BitsP
NG

Option true, false If true, requests to generate PNG with 8-bits depth instead of 24-
bits. This makes the PNG output compatible with Microsoft
Internet Explorer versions <= 6.0, which cannot deal with RGBA
PNG. This option always overrides the QUALITY parameter

GMLOutputFol-
lowModel

Option true, false Request to have the default GML output format to be GML2 or
GML3 depending of the actual model used. If not set, the default
is GML2 for WFS 1.0 and GML3 for WFS 1.1 or above.

IgnoreDataSRS Option true, false If set, this option allows you to use and expose the SRS defined in
the mapping file and ignore the SRS defined in the data (such as
a prj file forshapefiles). It currently only applies to shapefiles.
Default value is false. See also the Info “SRS” element,
“overwrite” attribute.

LegendConfig Info,
Option

true, false This option allows to configure the output produced by the
GetLegendGraphic through SLD rules. This element can be either
in tho Info section for a single feature type, or in the Option
section for global application. See that same element in the "Info"
section for detail of each attribute. <LegendConfig outline="true"
width="30" height="40" fontsize="40"/>

MaxMemorySize Option number The max memory size to allocate per request in bytes. This is a
hint. It is currently used in the GML generation. A negative or zero
value puts everything in memory. (Otherwise a backup file is used
, well it is slower but safer...)
<MaxMemorySize>10000000</MaxMemorySize>

Table 52: The Option Tag (Continued)

454 Feature Mapping Tags

OGCStrictCon-
formance

Option true, false If set, this option forces the output of the WFS to strictly obey the
OGC-published schemas. It mostly impacts the set of
FilterCapabilities in the WFS 1.1 capabilities document. Keeping
this value set to false allows you to extend the set of
FilterCapabilities to other operators.

OptimizeG-
MLOutput

Option true, false If true, requests not to compute the box of the resulting feature
collection. This prevents from rewriting the GML output stream to
put the computed box at the beginning

RemoveDeleteC
heck

Option true, false It applies to WFS "Delete" transactions. If set, the WFS will never
check if something has been deleted. Otherwise (the default
behavior), the WFS will check if there has been a deletion. If there
was a deletion and the transaction still exists it will throw an error.

RemoveUpdate-
Check

Option true, false It applies to WFS “Update” transactions. If set, the WFS will never
check if something has been updated. Otherwise, the WFS will
check if there has been an update (this is the default behavior). If
there was an update and the transaction still exists, it will throw an
error.

SchemaLoca-
tion

Option string This option specifies the schema location attribute written into
GML output. It is written as-is, no correctness check is done. The
default behaviour of the WFS is to generate one relative to itself,
but sometimes it may be convenient to force the location of the
various schemas. <SchemaLocation> http://www.opengis.net/ogc
http://schemas.opengis.net/gml/2.1.2/feature.xsd</SchemaLocati
on>

SRSOutputFor-
mat

Option none,
SHORT,
URN,
URNCON
VERT

This option defines how the WFS outputs the SRS. The default is
as the user typed it, "SHORT" forces the code:value notation (e.g.
EPSG:26986), "URN" forces the URN notation, "URNCONVERT"
sets the URN notation converted into the OGC codes (e.g.
EPSG:4326 gives OGC:84).
<SRSOutputFormat>URN</SRSOutputFormat>

UsePixelPattern
V2

Option true, false Requests to generate a pixel space pattern using a method more
compatible with Adobe Viewer. Default is false.
<usePixelPatternV2>true</UsePixelPatternV2>

UseUTCDate Option true, false requests to output UTC dates instead of GMT ones (UTC = GMT
+ 12h). (Default: false) <UseUTCDate>true</UseUTCDate>

Table 52: The Option Tag (Continued)

Feature Mapping Tags 455

User Functions
Section:
<UserFunction>

The tags belonging to this section allow publishing of functions which
are implemented in the underlying database.

Units Definition
Section:
<UnitDefinition>

The tag belonging to this section allows reference to unit dictionaries for
use with Measurement types and unit associations, as soon as the
predefined units do not match the need. In fact, ERDAS WFS comes
with a set of predefined units, namely Angles in Degrees (deg), Angles
in Grads (grad), Angles in Radians (rad), Distance in Kilometers (Km),
in Meters (m), in Centimeter (cm), in Millimeter (mm) and in Inches (in).

The <UnitDefinition> element has no sub-element. It sets the URL of
the dictionary used for measures. The referenced document must
contain a GML dictionary of unit definitions.

In the mapping file, the association has to be declared AFTER the
unit and the property are known. So, the <UnitDefinition> element
has to be set before the <UnitAssociation> tag if the association
uses this form, or before the <Mapping> tag if the "measure"
attribute is declared in an <Element> tag.

Table 53: The UserFunction Tag

Element (* means multiple
occurrences)

Allowed Par-
ent

Attributes Description

UserFunction Document root defines a user function implemented in the
backend database

name the user function name as exported in the
capabilities and used in the filter

nameSQL the database function name (or procedure
name)

Table 54: Sub-Elements of the UserFunction Tag

Parameter * UserFunction Defines the nth parameter type

type the parameter type (default to string)

nbr the number of parameter to repeat (default is 1)

Return UserFunction optional element to define the function returned type. If not
specified, the returned type is not a string.

type defines the return type of the function

456 Feature Mapping Tags

Units Association
Section:
<UnitAssociation>

As soon as a feature property is a measure, it value is given in a unit.
There are two ways to associate a feature property with a unit. Either
you can use the "measure" attribute of the "Element" tag or you can
define a Unit Association using the current tag.

In the mapping file the association has to be declared AFTER the
unit and the property are known. We recommend the
<UnitAssociation> element to be set at the end of the mapping file.

WMS Layer
Hierarchy Section:
<WMS>

The tags belonging to this section allow exposing the layers as a
hierarchy, so that the WMS capabilities document discloses an
organized structure of layers, and so that aggregates of layers can be
requested.

Table 55: The UnitDefinition Tag

Element (* means multiple occur-
rences)

Allowed Par-
ent

Attributes Description

UnitDefinition Document root References a dictionary used for
measures

PCDATA The URL to the units dictionary

Table 56: The UnitAssociation Tag

Element (* means multi-
ple occurrences)

Allowed
Parent

Attributes Description

Unit Association Document root associates a measure unit to a property of a
feature type

type the feature type

name the property name (defined by an Element tag)

measure the unit name (one of the internal ones, or one
defined in the unit dictionary given by the
UnitDefinition tag

Feature Mapping Tags 457

Table 57: The WMS Tag

Element (* means multiple
occurrences)

Allowed Par-
ent

Attributes Description

WMS Document root defines some behaviour of the WMS
interface built on top of the WFS

Table 58: Sub-Elements of the WMS Tag

Element (* means multi-
ple occurrences)

Allowed
Parent

Attributes Description

Layer WMS, Layer Defines a node in the layer structure of the WMS

title the title that will appear in the WMS capabilities
document

type for a layer corresponding to an actual feature
type, the name of that feature type

name only applies to layers which are not feature types.
It will allow the category layer to be used in
requests.

458 Coverage and Image Servers

Coverage and Image Servers

Image Server
Concepts

The ERDAS Image Server is a Java component that manages and
delivers an Image Service on geo-enabled raster files. The Image
Server is able to manage one single image or multiple images
organized as a layer in a directory. The Image Server is wrapped by the
ERDAS WMS Framework and allows the client to discover and query
geo-rasters through a coherent and standard-based WMS interface.
The ERDAS WMS Framework is a Java component that offers OGC
Web Map Server interface.

The configuration of the image server is done by configuring an
ImageProvider. The raster database may be one single image
(SimpleProvider), multiple images (tiles) organized as a layer,
geospatially indexed, and stored in a directory (LayerProvider) or a set
of images with one layer per image (MultiSimpleProvider). The image
files can be of multiple types but the engine is mostly designed to
produce good results on uncompressed TIFF images (including
GeoTIFF) or uncompressed BIL images. Formats like Jpeg, Gif or
others are supported but do not provide adequate performance.

In the case of many image layers, the distribution provides a tool to
index the image database. See "Tools and Viewers" chapter for an
explanation of the ImageLayerIndexer tool.

Image Provider Types There are several types of Image providers from which to choose:

• The SimpleProvider. It is used to publish a single image.

• The LayerProvider. It is used to create a layer using a set of tiles.
The images do not need to have the same size, the same format
and may even overlap.

• The MultiSimpleProvider. It is used for a collection of images that do
not form a layer. This is useful if the same image is used at a
different time of the year, the same place at different scales or even
unrelated images.

Coverage and Image Servers 459

Configuring
Individual
Coverages/Images

The configuration file where a given image is exposed is called the
providers.fac file. (See Provider Types for a description of this file).
To access a single image, configure a "SimpleProvider" in the
providers.fac and insert as JCLASS the attribute of the CREATE
element, the
com.ionicsoft.wmtmap.provider.imageProvider.SimpleProvide
r class. The syntax of the <CREATE> tag is as follows: the mandatory
element is the PARAM element having "path" as NAME attribute and
the path to the image file as VALUE attribute. For example, to serve the
orthophotoplan of Brussels:

Figure 133: Brussels Orthophotoplan

whose image file is named D:/Erdas/data/images/Brussels.bil and
whose header file is named D:/Erdas/data/images/Brussels.hdr,
the entry in the providers.fac is:

Example:A Simple Image Provider

<CREATE ID="Brussels"

JCLASS="com.ionicsoft.wmtmap.provider.imageProvider.SimpleProvi
der"/>
 <PARAM NAME="path" VALUE="D:/Erdas/data/images/Brussels.bil" />
 <PARAM NAME="SRS" VALUE="EPSG:4326" />
 <PARAM NAME="name" VALUE="Brussels" />
</CREATE>

Other parameters can be added to the provider definition. Please refer
to the appendix "Provider parameters" for more information.

460 Coverage and Image Servers

To access a set of images, configure a MultiSimpleProvider in the and
to mention, as JCLASS attribute of the CREATE element, the
com.ionicsoft.wmtmap.provider.imageProvider.MultiSimplePr
ovider class. The syntax of the <CREATE> tag is as follows: the
mandatory element is the PARAM element that have "path" as NAME
attribute. The path to the directory where the image files are is the
VALUE attribute.

Figure 134: A Set of Images on Brussels

For example, to serve a collection of TIFF images on Brussels which
image files are named
D:/Erdas/data/images/brussel/spotjanuary.tif to
D:/Erdas/image/brussel/spotdecember.tif , the entry in the
providers.fac file is:

Example:Provider for a MultiSimpleProvider

<CREATE ID="BrusselThisYear"

JCLASS="com.ionicsoft.wmtmap.provider.imageProvider.MultiSimple
Provider"/>
 <PARAM NAME="path" VALUE="D:/Erdas/data/images/brussel" />
 <PARAM NAME="SRS" VALUE="EPSG:4326" />
</CREATE>

This provider permits seeing each image as a layer in the capabilities
document. They can be invoked individually, but only through a single
entry in the configuration file. This is the same rule for an individual
image apply. The layers will be named with the full path to the image.

Coverage and Image Servers 461

Configuring a
Mosaic or a list of
Coverages/Images

To access a collection of images and see them as a single layer,
configure the LayerProvider in the providers.fac input as a
JCLASS attribute of the CREATE element the
com.ionicsoft.wmtmap.provider.imageProvider.LayerProvider
class. The mandatory element to put in the CREATE attribute is the
PARAM element that has "path" as the NAME attribute. The path to the
directory of the index file is the VALUE attribute. For example, in order
to serve a layer of BIL images whose image files are named
D:/Erdas/data/images/dallas/spot1.bil to
D:/Erdas/data/images/dallas/spot10.bil and whose
corresponding header files exist, the entry in the providers.fac file is:

Example:Sample LayerProvider

<CREATE ID="Dallas"

JCLASS="com.ionicsoft.wmtmap.provider.imageProvider.LayerProvid
er"/>
 <PARAM NAME="path" VALUE="C:\\image\\dallas"/>
 <PARAM NAME="name" VALUE="Dallas" />
 <PARAM NAME="SRS" VALUE="EPSG:4326" />
</CREATE>

As for the previous types of image providers, other parameters can be
added to the provider definition. Please refer to the appendix "Provider
parameters" for information.

Image Layers Index File The index file, named "PRIME_IDX", must be present in the directory
and have the structure as described below. If there is a layer to be
accessed in a continuous way, georeferenced images are required. If
not, the images location will be automatically set to 0,0 in their
respective SRS and the locations of the images will all be incorrect.
Create an index file. This index file can be automatically created by an
indexing tool that inspects existing files in a given directory and creates
the index file, named PRIME_IDX, on them. Also an index can be
created by hand. This index file must be in the same directory as the
layer images and has the following format:

• Index file organization: PRIME_IDX

• One header line: H_IONIC_LAYER V <version_nr> C
<image_count> <date>

• One line per image: <width> <height> <xmin> <ymin> <xmax>
<ymax> <filename>

Date is an integer and can be set to 0 if created by hand.
H_IONIC_LAYER is a fixed string and is the header indicator

For example, this is the listing of the file PRIME_IDX of one image layer

462 Coverage and Image Servers

Example:Sample PRIME_IDX file

H_IONIC_LAYER V 1 C 4 200201111333
5941 7609 410764.34 4573631.48 416705.34 4581240.48
harveys_lake_pa_ne.bil
5946 7613 405532.77 4573693.41 411478.77 4581306.41
harveys_lake_pa_nw.bil
5946 7609 410679.44 4566692.97 416625.44 4574301.97
harveys_lake_pa_se.bil
5951 7613 405442.88 4566754.9 411393.88 4574367.9
harveys_lake_pa_sw.bil

The index is used by the image server to quickly select the images to
process to create a view for the "getmap" requests.

The Image Data
Model

The Image server handles images retaining some of the rules for the
images data model. Each image is composed of multiple parts:

• The "header" or raster information giving the image size,
organization, number of bands, etc., and is often stored in a ".hdr"
file, or in the image file itself.

• The "world file" or "geolocation" expressing the location of the
image (its coordinate), is often stored in the world file (.tfw, .blw,
etc.), in the ".hdr" file, or in the image file itself in the case of
GeoTIFF.

• In the case of indexed color images, the "colormap" can be stored
in the ".clr" file or in the image file itself.

• The "data" representing the samples of the images is often stored
in a BIL file, or any other format (TIFF, GIF, etc.).

Each file format has its own model, header and format. The Image
Server is mainly oriented to support TIFF and BIL images.

Coverage and Image Servers 463

Figure 135: Example of a Data Model Organization

Each file associated with the image must have the same name as of the
image file plus a well-defined extension. The rules for creating header
files are described in next section.

The HDR File
Organization

Except for newly defined formats like GeoTIFF, existing image file
formats (SPOT, BIL, JPEG, GIF, PNG, TIFF) do not contain
georeferencing information in the data file. This means that some
header files have to be created or obtained to allow correct positioning
of the image in a reference coordinate system. Additionally, for BIL
images, the data file contains only raw data and the image information
and metadata is found in the header files which is a text file with ".hdr"
extension.

Example:Example of a Bil Image Setup

464 Coverage and Image Servers

there is raw image, e.g., named myimage.raw. Rename it with the ".bil"
extension. Create a new myimage.hdr text file, and enter the following
image properties in that file:

nrows 8568
ncols 9576
nbands 3
nbits 8
layout bil

• nrows and ncols mention the height and width in pixels of the raster
image

• nbands gives the depth of the image. nbits give the size of one pixel
in bits

• layout indicates the organization and can be "bil", "bip", "bib" or
"bsq"

Figure 136: Bil Bands

Coverage and Image Servers 465

Table 59: Parameter Names and Descriptions

Parameter
name

Type Description Example Version

nrows Integer Number of rows of this raster image. This record
provides the number of rows (lines) in image raster
file. It is also often referred to as the height of the
image.

8568 All

ncols Integer Number of columns of this raster image. This record
provides the number of pixels (samples, columns) in
each row of the image raster file. It is often also
referred to as the width of the image.

9576 All

Nbands Integer Number of spectral bands of this raster image. This
record defines the number of spectral bands present
in the raster image file. Typical values are:

• 1 for black and white or greyscale images (e.g.
SPOT Pan)

• 3 for RGB color images (e.g. SPOT XS images or
aerial photography)

• 4 for SPOT Xi acquisitions or Vegetation images

• 7 for Landsat images

3 All

Nbits Integer Number of bits per pixel of this raster image. This
record provides the number of bits used for each
pixel of each band of the raster image. By default
nbits=8 (a byte). It is recommended to provide this
value, even if the value is 8.

8 All

Layout String Bands layout for multiple band rasters. This keyword
describes the internal storage scheme used for the
raster data. In case the number of spectral bands
(nbands) is higher than 1, it is necessary to describe
the scheme used to mix the bands of the raster.
Currently there are three possibilities:

• BIL: Bands Interleaved per Lines

• BIP: Bands Interleaved by Pixels

• BIB or BSQ: Bands Interleaved by Band or Band
Sequential

When using standard file formats such as TIFF or
JPEG this information is stored into the raster file and
there is no need to use this keyword. A special
paragraph is dedicated to this topic.

Bil All

466 Coverage and Image Servers

Layout The layout describes the internal storage scheme used for the raster
data. In the case where the number of spectral bands (nbands) is higher
than 1, it is necessary to describe the scheme used to mix the bands of
the raster. Currently, the layout can be one of "bil", "bip", "bib" or "bsq".
The following table explains the type of organization with 3 bands of red
green blue. If there were 5 bands of temperature or vegetation, it would
be the same schema.

Skipbytes or
header

Integer Number of bytes to skip at the beginning of the raster
file. This keyword provides the number of bytes to be
skipped at the beginning of the raster file to get to the
first row of pixels. Both names are valid and have the
same meaning and exist due to some format
support. It is not good to have both, but if both are
defined, the current behavior is to use
max(skipbytes, header)

0 All

Color_mapping Struct Parameter to express the spectral bands that are to
be used as red green and blue. If the raster is
composed of 4 bands, numbered 0 1 2 3, designate
which bands are going to be used by the system as
R G B bands. If 3 0 1 are to be used, write
"color_mapping 3 0 1" in the file. Sometimes, there is
a gain and bias associated with a band. This means
that the value in the raster has to be corrected for
display. The value used can be updated by the
following formula: Result = (pixel value / gain) + bias.
If the values are not specified, the values are 1.0 for
the gain and 0.0 for the bias. To give the gain and
bias, look at the following example "color_mapping 3
0 1; 1.2 1.4 1.1; 0 0 0" here, the gain for red is 1.2,
the gain for green is 1.4, the gain for blue is 1.1; all
bias are at 0 This parameter is new and may not be
available in the current version.

0 1 2 2.1

Table 59: Parameter Names and Descriptions (Continued)

Table 60: Layout Table

layout Means Example Simple description

BIL Band Interleaved
by Line

RRRRRRRRR GGGGGGGG
BBBBBBBBB RRRRRRRRR
GGGGG.

For the first line, all the red samples
then all the samples for green, then all
the samples for blue, then we have
the second line.

BIP Band Interleaved
by Pixel

RGBRGBRGB RGBRGBRGB
RGB..

For all of the line, all samples of the
first pixels, then all samples of the
second pixel, etc

Coverage and Image Servers 467

Figure 137: BIL Layout

The World Coordinate
File Organization

Create a new myimage.blw text file, and enter georeferencing
information in it, for example:

1.000000000
0.0000000000
0.0000000000
-1.000000000
237583.750000000000
153205.050000000000

The first value is the width of a pixel in the project units (meter, degree,
...), and also called XDIM. The second and third values are for the
rotation, and should be 0 because rotation is currently unsupported.
The fourth value is the height of a pixel, but must be negative (YDIM)
because the y pixel axis starts at the top and goes down and the
coordinate axis starts at the bottom and goes up. The last two values
are the x and y position of the centre of the upper left pixel. (ULXMAP
and ULYMAP).

BIB
BSQ

Band Interleaved
by Band Band
SeQuential

RRRRRRRRRR RRRRRRRRRR
GGGGGGGGG GGGGGGGGG
BBBBBBBBBB BBBBBBBBBB

All the samples of the first band, then
all the samples of the second band,
etc. BIB and BSQ means the same.

Table 60: Layout Table (Continued)

468 Coverage and Image Servers

This method is called a "Geopositioning by insertion point" and the file
containing the 6 values is often referred to as a world coordinate file.
Geopositioning by insertion point is performed by a unique point (upper-
left) and dimensions of pixel cells. The relationship between raster and
coordinates is: - X = ULXMAP + XDIM * i - Y = ULYMAP - YDIM * j
where (i,j) are floating point pixel coordinates starting from (0.0, 0.0).
These equations are valid for standard axis orientations (eastwards and
northwards).

Figure 138: World File

By default, the coordinate (ULXMAP , ULYMAP) is the centre of the
upper-left pixel.

Naming Organization of World File

The world file must have a name that fits the type of the file, e.g., for
myimage.tif, the world file is myimage.tfw; for myimage.bil, the world file
is myimage.blw; for myimage.gif, the world file is myimage.giw. See the
table at the end of this section, for the complete list of supported formats
and the corresponding world file extensions.

For GeoTIFF images, the header information is included in the
images. There is no need to create a world file. However, the SRS
parameter in the providers.fac file still must be set even if it is
set in the GeoTIFF header.

Coverage and Image Servers 469

Coordinates in the Hdr File

Sometimes, these 4 values are found directly in the ".hdr" file under the
tags of the same name (xdim, ydim, ulxmap, ulymap). Therefore, there
is no need for the world file. To use these tags in the hdr file, look at the
following table.

Table 61: HDR File Tags

Parameter
name

Type Description of parameters and their name in the hdr file Exam
ple

Ver-
sion

ulxmap double Upper-left pixel System X coordinate in the Coordinate Reference
This record provides the CRS X coordinate of the upper-left raster
image corner. It is expressed in the Coordinate Reference System.
The sub-pixel location pointed to by ulxmap is dependant upon the
"raster_cs_type" keyword value. By default, it is the centre of the
pixel.

55.3 All

ulymap double Upper-left pixel System Y coordinate in the Coordinate Reference
This record provides the CRS Y coordinate of the upper-left raster
image corner. It is expressed in the Coordinate Reference System.
The sub-pixel location pointed to by ulymap is dependant upon the
"raster_cs_type" keyword value. By default, it is the centre of the
pixel.

4.21 All

xdim double Pixel dimension along the column axis (x) in the map coordinate
space. This keyword provides the (x) column axis dimension of
each pixel of the raster image. The value is expressed in the CRS.
This value is positive, whatever the orientation of the coordinate
axis may be, e.g, a value of 20.0 would mean that one pixel has an
horizontal length of 20(meters in a metric system or degrees if the
CRS is geographic)

20 All

ydim double Pixel dimension along the row axis (y) in the map coordinate
space. This keyword provides the (y) row axis dimension of each
pixel of the raster image. The value is expressed in the CRS. This
value is positive, whatever the orientation of the coordinate axis
may be, e.g., a value of 20.0 would mean that one pixel has an
vertical length of 20(meters in a metric system or degrees if the
CRS is geographic)

20 All

raster_cs_ty
pe

String Raster Coordinate System type. The raster pixel array can be
considered as a series of points or as a series of adjacent cells
depending on the type of data the raster is representing. This has
a direct consequence on the interpretation of ULXMAP and
ULYMAP keywords. This location can be located at the centre of
the top-left most pixel (raster_cs_type=point) or at the upper-left of
that same pixel (raster_cs_type=cell). By default,
raster_cs_type=point

point 2.1

470 Coverage and Image Servers

Figure 139: Raster CS Type

The Color File
Organization

In some cases, the raster image is a file of indexed pixels. This means
that each pixel in a byte which value is an index in a colormap where
the system can find the RGB colors to use to display that pixel. The file
containing the RGB values is called the "colormap" and can be stored
in an ASCII file with a ".clr" extension.

This should only work with images stored as 1 band of indexed
pixels. (nbands=1, nbits=8)

If using PaintShopPro, the colormap of an image is easily seen. In
the Color menu, there is a "Save palette" menu. If the palette is
saved as a Jasc Palette file, a file is named "image.pal". Rename
it to “image.clr" and a valid palette file will exist for the image. This
tool can be used to define, read and write the palette.

Header Files Summary
Table

The following table indicates the name of the header file(s) to adopt for
each image format.

Table 62: Color File Format Table

Color File format

PaletteHeader
0100 256 0 255 0 38 54 90 57 43 76 55 57 93 66 43 76 ……

Each line of 3 values is a valid entry of the palette file. The first data line (here 0 255 0) is for the index 0.
The next one is for index 1. The three values represent the R G B component for the pixel index. (0 255 0
stands for green). Only the 3 values lines are required. The lines at the beginning are optional and not
used, but if there are lines at the beginning, they can be made of only one word per line.

Coverage and Image Servers 471

USGS Metadata If there is a TIFF or a BIL file with the HDR file header coming from
USGS for Digital Orthophoto Quadrangle (DOQ), it is unnecessary to
do any other processing and the ImageServer should support it directly.
To see if the file comes from the USGS, open the hdr file with any text
editor. If there are tags named QUADRANGLE_NAME, QUADRANT
and PRODUCTION_SYSTEM, it means the files are probably coming
from the USGS.

Limitations and
Constraints

• File separators can be given either in the Unix form, i.e. "/" or in the
Dos form "\" in which case it must be backslash-headed "\\". This
rule does not apply to URLs taking only "/".

• Compressed TIFF images are currently not supported.

• Rotated images are currently not supported.

• Bands split in multiple files are not supported.

Table 63: Header Files Table

File format
(extension)

World Geo
reference file
format
(extension)

Description Capabilities for
Compression
level

Transparency
built in

Colormap

apf apw Deprecated Uncompressed Yes

bil blw or hdr Fast passing
Uncompressed
raw format

Uncompressed No clr

bmp bmw Windows format Uncompressed No

gif gfw ! Unisys license
needed. Contact
Unisys.

Gif compression Yes Inside

jpg jpw or jgw Jpeg image Variable No No: 24 bits

jpeg jpw or jgw Jpeg image Variable No No: 24 bits

pcx pcw Pc paintbrush No

png pnw Portable Network
graphics

Yes No

ppm ppw Portable pixmap No No

tga tgw Targa No

tif tfw (or none for
GeoTIFF)

TIFF or GeoTIFF Uncompressed No Inside

472 Coverage and Image Servers

Imagery
Connectors

The GDAL Tool This section introduces the GDAL tool and how to use it in the WCS
framework.

Description

GDAL Tool is a connector on the GDAL C++ library. It is a small binary
that is able to decode metadata from source files and convert/subset
these source files to produce WCS results. This chapter describes its
installation, configuration, usage and the supported formats.

Supported formats

The GDAL Tool is plugged in the WCS, and configured to be called for
specific extensions using the decoder.txt configuration file. When the
WCS does not find a decoder from the source extension, or if all
decoders fail, the WCS will also call the GDAL tool as a last chance
attempt.

You can use the OpenEV package to view your images and check
their formats: dted, geotiff, ...

Currently tested and supported input (R) and output (W) formats:

Table 64:
Table 65: GDAL-based Source Formats by Platform

Format Name Windows Linux Solaris

JPEG2000 R/W R/W R/W

NITF R/W R/W R/W

GeoTIFF R/W R/W R/W

Compressed TIFF R/- R/- R/-

TIFF with non-contiguous strips R/- R/- R/-

ECW R/W (500m) R/W (500m) -/-

MrSID R/- R/- R/-

DTED R/W R/W R/W

NetCDF R/- R/- R/-

HDF4 R/- R/- R/-

Coverage and Image Servers 473

Notes of formats:

• NITF: suported versions are 1.1, 2.0, 2.1

• JPEG2000 (jp2): supported through the Kakadu library.
Georeferenced header are supported.

• DTED1 & DTED2: the "srs" parameter must be present in the
providers.fac, as the srs is not always defined in DTED header.

• HDF4: providing the sub-data tiles order is defined in a .til file.

The GDAL library supports many other input formats. They should be
working with the WCS/IAS framework but they have not been tested.
For a complete list of GDAL supported formats, please see GDAL
Raster Formats. These formats include:

• VRT, HFA, ELAS, AAIGrid, PNG, JPEG, MEM, GIF, XPM, BMP,
PCIDSK, PNM, ENVI, EHdr, PAux, MFF, MFF2, BT, FIT,
USGSDEM..

The following commercial librairies have been added to the original
GDAL package:

• The JP2KAK (Kakadu) add-on provides support for JPEG2000 with
no size limitation. Note that Kakadu is a commercial library bundled
with our product.

• The ECW decoding library from EARTH RESOURCE MAPPING.

Known limitations

• A NITF file is not georeferenced, it only has 4 Ground Control
Points, real precision only comes with pixel space seeking (Image
CRS). The SRS will be taken from the "srs" parameter in the
providers.fac file.

• Metadata tags decoded by GDAL are not mirrored in the capabilities
or in a ISO 19139 file.

• GDAL cannot encode Geotiff files with different data types in
different bands, for example, all 8bits data except 1 band

• While it is possible to create a Geotiff file using 8,16,32 and 64bits
data it is not possible to create:

1. ECW > 8bits data, only byte data is supported

2. JPEG2000 > 16bits data, only byte, short or ushort data is supported

http://www.gdal.org/formats_list.html
http://www.gdal.org/formats_list.html

474 Coverage and Image Servers

3. DTED > 16bits data, only byte, short or ushort data is supported

• The gdal_tool stitching and resampling capabilities are not used so
that heterogeneous providers that mix GDAL and non-GDAL-based
formats can produce proper output. This is also the case for the
IndexProvider. If a SimpleProvider or a MultiSimpleProvider is set
up, each tile or granule appears individually in the capabilities and
must be requested individually in the GetCoverage request, as the
name of this tile will constitute the value to the COVERAGE
parameter in the request. Therefore, the request will never receive
hybrid formats. Furthermore, it is possible to ask GDAL to
immediately produce other supported formats instead of just
GeoTIFF. This is why the Capabilities document for those provider
types publish additional output formats such as JPEG2000, ECW
(on Windows) and NITF.

Linux and Solaris Configuration

Multiple GDAL builds are available in the Linux installation

• one static build

• one dynamic build dependant of the libstdc++.so.6 library (Linux
systems compiled with gcc 3.4 et after). This is the one configured
by default at installation.

• one dynamic build dependant of the libstdc++.so.5 library (for older
Linux systems).

Several GDAL builds are available in the Solaris installation

• one dynamic build compiled on Solaris 8 with the Sunpro compiler
and successfully running on Solaris 8, 9 and 10. This is the one
configured by default at installation.

On Solaris 8, it assumes system patches 108434-22 (C++) and
112757-01 (Math) are installed. On Solaris 9, it assumes system
patches 111711-16 (C++) and 111722-04 (Math) are installed.

• one dynamic build compiled on Solaris 10 with the Sunpro compiler
but only running on Solaris 10.

On Linux and Solaris, a wrapper called gdal_tool is used to configure
which build to use and its library dependancies (LD_LIBRARY_PATH
variable configuration).

Coverage and Image Servers 475

Hierarchical data sets

HDF4 data sets are composed of sub-datasets (tiles) that must be
organised to create multiple bands of data on the whole set extent.

For example, Landsat HDF4 data are composed of 8*8*7 = 448
subdatasets. In order to serve this data, the ERDAS WCS must know
how these 448 sub-datasets can be organized in 7 bands of 8*8 tiles.
Indeed, GDAL does not provide this critical information.

It is then necessary to provide and configure a new metadata file for
each hdf4 file, each hdf4 dataset can then be described by three files,
for example:

1. Geocoded_landsat_tm193_22_890707.hdf: the hdf4 data file

2. Geocoded_landsat_tm193_22_890707.hdf.xml: the xml metadata file,
encoded in ISO19115/19139 or other proprietary format

3. Geocoded_landsat_tm193_22_890707.hdf.til: the file that provide the
tiles order in the hdf4 file.

The last file must have the .til extension and should contain following
information:

TILES_METADATA 2
DATA_TYPE HDF4_Landsat
714826.2,5949126.5,958730.5,6154977.5
EPSG:32632
Y -8
X 8
CHANNEL 7

In the above example:

• The file format is "TILES_METADATA" and its version is "2"

• The "DATA_TYPE" is "HDF4_Landsat", this data type will appear in
the granule metadata and identify the SLD rule that should be used
to render the granule.

• The granule bounding box is
"714826.2,5949126.5,958730.5,6154977.5", this is the data
complete extent when all the tiles are assembled

• The bounding box spatial reference identifier is "EPSG:32632"

476 Coverage and Image Servers

• From the last three lines, we can say that the granule is composed
of 8*8*7 tiles, and each of the 7 bands is 8 tiles width and 8 tiles
height. We can also determine the tiles order within the hdf4 data
file:

1. The tiles are first stored along the Y axis, from the lowest tile until the
uppest

2. The columns are then stored along the X axis, from the left column until
the right one.

3. The bands are then stored from the first band until the band number 7.

Figure 140: Tiles order in Landsat hdf4 dataset

GDAL Installation Notes The installation of the GDAL Tool is automatic in the distribution. The
gdal_tool binary is in APOLLO_HOME/tools/native/gdal, along with
the appropriate dynamic libraries.

Coverage and Image Servers 477

A set of dynamic libraries (.dll or .so files) are provided along with the
tool to support proprietary formats like ECW or MrSID. On Windows, no
additional configuration is needed to access those libraries when they
are located in the same directory as the gdal_tool executable. On Linux,
the LD_LIBRARY_PATH environment variable must be set to that
same path in order for the .so files to be found. That variable should be
set in the servlet engine startup script to ensure proper propagation up
to the gdal_tool executable. To avoid that dependency for users not
interested in particular data types, the static executable is activated by
default. To use the dynamic one instead, rename gdal_tool as
gdal_tool_static, and rename gdal_tool_dyn as gdal_tool. It may also
be necessary to create symbolic links from .so.1 files to the existing .so
files.

ERDAS APOLLO Image Manager and ERDAS APOLLO currently
provide binaries for the following platforms:

• Linux (static and dynamic)

• Windows

• Solaris

GDAL Configuration

1. Servlet Configuration

The providers.fac entry has to mention:

• the GDAL directory path: parameter 'GDALPath', the directory where
the gdal_tool binary is copied

• the temporary directory path: parameter 'tmpPath', the directory
where the temporary directories will be created

If some of the configuration is missing, error messages arise:

• If GDALPath is not set: javax.servlet.ServletException: Cannot
construct provider NITF1
com.ionicsoft.api.util.PropertyNotFoundException: Property Not
Found: GDALPath

• If GDALPath is set but does not point to a directory where the binary
is: javax.servlet.ServletException: Cannot construct provider NITF1
com.ionicsoft.api.wcs.CoverageConfigurationException: Error :
gdal metadata decoder tool
C:/Erdas/Apollo/tools/native/gdal/gdal_tool.exe can not be found !

478 Coverage and Image Servers

2. Sample providers.fac File

<CREATE ID="GDALTEST"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.SimpleProvider"
>
 <PARAM NAME="name" VALUE="GDALTEST"/>
 <PARAM NAME="title" VALUE="NITF Coverage Server"/>
 <PARAM NAME="abstract" VALUE="NITF Data"/>
 <PARAM NAME="metaurl" VALUE="" />
 <PARAM NAME="keywords" VALUE="nitf,gdal,test,Coverage"/>
 <PARAM NAME="GDALPath" VALUE="D:\resin-219\webapps\wcs\WEB-
INF\resource\GDAL\" />
 <PARAM NAME="tmppath" VALUE="D:\resin-219\webapps\wcs\WEB-
INF\resource\GDAL\temp\" />
 <PARAM NAME="path" VALUE="
 \\Server\DataArchive\CoverageData\NITF\03SEP01022335-M1BS-
000000102191_01_P002.NTF.rv2" />
 <PARAM NAME="backgroundValue" VALUE="0" />
</CREATE>

<CREATE ID="GDALTEST1"
JCLASS="com.ionicsoft.wmtmap.provider.coverage.SimpleProvider"
>
 <PARAM NAME="name" VALUE="GDALTEST1"/>
 <PARAM NAME="title" VALUE="DTED Coverage Server"/>
 <PARAM NAME="abstract" VALUE="DTED Data"/>
 <PARAM NAME="metaurl" VALUE="" />
 <PARAM NAME="keywords" VALUE="dted,gdal,test,Coverage"/>
 <PARAM NAME="GDALPath" VALUE="D:\resin-219\webapps\wcs\WEB-
INF\resource\GDAL\" />
 <PARAM NAME="tmppath" VALUE="D:\resin-219\webapps\wcs\WEB-
INF\resource\GDAL\temp\" />
 <PARAM NAME="path"
VALUE="\\Server\DataArchive\CoverageData\DTED\N32.DT2" />
 <PARAM NAME="srs" VALUE="EPSG:4326" />
 <PARAM NAME="backgroundValue" VALUE="-32767" />
</CREATE>

3. Using GDAL encoding abilities to enable new output formats

The output formats advertised in the DescribeCoverage docmument of
the WCS interface defines the possible encoding offered by this
inerface. The list of the available output formats results from GDAL
encoding abilities and a configuration file telling which formats to
expose. That file can be modified to offer more output formats. The file
to modify is called 'gdal_formats.prop' and should be found in the WCS
servlet classpath, in the package com.ionicsoft.keys.resource to
take effect. Below is an example of gdal_formats.prop file:

list of supported GDAL output formats,
the formats names match GDAL driver short names

already tested formats

Coverage and Image Servers 479

FORMAT1=GTiff
FORMAT3=NITF
FORMAT2=JP2KAK
FORMAT4=DTED
FORMAT5=ECW

not tested formats

FORMAT6=USGSDEM
FORMAT7=VRT
FORMAT8=HFA
FORMAT9=ELAS
FORMAT10=AAIGrid
FORMAT11=MEM
FORMAT12=XPM
FORMAT13=PCIDSK
FORMAT14=PNM
FORMAT15=ENVI
FORMAT16=EHdr
FORMAT17=PAux
FORMAT18=MFF
FORMAT19=MFF2
FORMAT20=BT
FORMAT21=FIT
FORMAT22=HDF4Image

The five first output formats are the one usually available through the
WCS interface. These encoding are tested and supported. The other
formats are other encoding formats proposed by GDAL. These
encoding have never been tested and ERDAS does not guarantee that
these will work if they are enabled.

To enable a new output format, just remove the '#' sign in front of the
desired format line.

Using GDAL Library

The decoding framework of ERDAS servlets will first try to use
ERDAS's own decoders based on the file extensions. If no known
extension is found or if the files cannot be parsed the framework makes
a call to gdal_tool.

Testing the gdal_tool Binary

The tool has two functionalities:

• decoding metadata with the metadata tool

• converting/subsetting data with the convert tool

480 Coverage and Image Servers

1. metadata tool

The following command will create an ASCII file (destFilePath) with
the source (sourceFilePath) metadata:

gdal_tool -meta -s sourceFilePath -o destFilePath

Here is a sample output:

Source=aurora-1010010002DFDB00.tif

Driver=GTiff
DriverName=GeoTIFF

PixelSize=(913,789)

Srs=EPSG:4326

GridOrigin=(-105.662293,40.052810)

PixelRes=(0.00139209,-0.00139209)

Box_UpperLeft=(-105.662293,40.052810)
Box_LowerLeft=(-105.662293,38.954448)
Box_UpperRight=(-104.391312,40.052810)
Box_LowerRight=(-104.391312,38.954448)

NBands=3
BlockSize=(913,8);(913,8);(913,8)
DataType=Byte,Byte,Byte
ColorInterp=Red,Green,Blue

HasMetadata=false

2. convert tool

The convert tool is able to convert/subset/transform source files via a
simple command like:

gdal_tool -convert -srcwin 0,0,srcPixelWidth,srcPixelHeight -
outsize 400 400
-s sourceFilePath -o destFilePath

This will create a 400*400 Geotiff file (destFilePath) with the same
BBOX and the same number of bands as the source data
(sourceFilePath).

Coverage and Image Servers 481

Testing in the WCS servlet

Depending on the decoder definitions set in the decoder.txt
configuration file located in the ionic_cots.jar in
com/erdas/coverage/decoder/resource/, some file extensions are
automatically managed by GDAL. Moreover, if the extension is finally
not recognized, GDAL will be invoked as last-chance decoder. If you
want to check that GDAL is properly configured, set up a Simple
coverage provider on top of a coverage file which extension is changed
to .foo .

GDAL is also used to produce outputs in NITF, DTED, JPEG2000 and
ECW. If you successfully run a GetCoverage request asking for one of
those formats, you can be sure that GDAL is properly invoked for
outputs.

Very Large
Coverage Manager

Usually, the size of data that can be processed at a time is limited to 2
or 4Gb in most applications.

Thanks to the Very Large Coverage Manager, the ERDAS WCS is able
to process data of any size through the whole chain, from input, through
subsetting, mosaïcing, ..., portraying, until the output. The working size
is only limited be the hard drive storage capacity.

The ERDAS WCS is able to output a 50Gb Geotiff files by mosaïcing
thousands of big source files.

Very Large Coverage
Management Description

The WCS framework is based on J2ee Raster API. The Raster object
manages its data using a single array per band. This means that the
number of pixels per band is limited to the Integer maximum value, as
the index of the array is an integer, so:

(pixel width * pixel height) < integer maximum value (2147483647)

For example, a Java Raster of pixel sizes [46340*46340] is possible but
a Java Raster of pixel sizes [46341*46341] is impossible. The (VLCM)
has been created to manage bigger coverage grids through the whole
coverage processing chain. Usual WCS request processing chain is
following:

482 Coverage and Image Servers

Figure 141: WCS Process Chain

Any WCS provider can call the VLCM if the request output sizes are
bigger than a defined number. The following guard decides the VLCM
call:

If(pixel width * pixel height > VERYLARGETRIGGER *
VERYLARGETRIGGER)
Call VLCM;

That number can be configured in pixels using the
VERYLARGETRIGGER parameter in the WCS providers.fac entry
(default is 5000):

<PARAM NAME="VERYLARGETRIGGER" VALUE="2500" />

The VLCM is working on top of the coverage framework, so that any of
its abilities (coordinate transform, stitching, decoding,…) are available
for very large coverage processing:

Coverage and Image Servers 483

Figure 142: Very Large Coverage Processing

484 Coverage and Image Servers

The VLCM will perform multiple requests on the WCS framework to get
small tiles (tiles with less than VERYLARGETRIGGER *
VERYLARGETRIGGER pixels each). Each tile will be directly stitched
in the result stream. If the requested output format is GeoTIFF, the
result stream is directly returned through the servlet engine. If not, the
stream is written onto disk as a Geotiff (+vrt) file. GDAL is then called
on that file to produce the JPEG2000 or NITF file. Finally GDAL’s result
is streamed back through the servlet engine.

The VLCM will work with any WCS provider (SimpleProvider,
IndexProvider, …) on any type of coverage data (GeoTIFF, NITF, …).

If the parameter STORE is set to TRUE in the WCS request, the WCS
will return an XML file with the result description and an URL pointing
on that result.

Per WCS request:

• The VLCM will not consume more memory than the one needed for
two or three tiles (three if coordinate transform is needed), i.e. 3 *
VERYLARGETRIGGER * VERYLARGETRIGGER * bits_per_sample *
number_of_bands bytes.

• The VLCM will not consume more hard-drive space than the one
needed for two or three times the uncompressed result (three if
STORE=TRUE is used), i.e. 3 * pixel_width * pixel_height
* bits_per_sample * number_of_bands bytes.

Very Large Image
Management

The Very Large Image Manager (VLIM) has been created to manage
very big map requests on WCS/CPS, through the whole coverage
processing and rendering chain. Usual WCS/CPS
processing/rendering chain is following:

Coverage and Image Servers 485

Figure 143: WCS/CPS processing/rendering chain

The VLIM will be called by any WCS provider if the map request output
sizes are bigger than a defined number (VERYLARGETRIGGER parameter
in providers.fac, default is 5000.

The VLIM is working on top of the portrayal framework, so that any of
its abilities (channel selection, contrast enhancement, look-up
tables,…) are available for very large coverage processing and
rendering.

486 Coverage and Image Servers

The VLIM will perform multiple requests on the CPS framework to get
small tiles (tiles with less than VERYLARGETRIGGER *
VERYLARGETRIGGER pixels each). Each tile will be directly stitched in the
result stream. If the requested output format is GeoTIFF (Geotiff image
format), the result stream is directly returned through the servlet engine.
If not, the stream is written onto disk as a Geotiff (+vrt) file. GDAL is then
called on that file to produce the PNG, JPEG, GIF or BMP image file.
Finally GDAL’s result is streamed back through the servlet engine.

If some contrast enhancement is requested to render the coverage data
(Normalize or Histogram), some control must be applied on the CPS to
avoid inhomogeneous rendering on the stitched result, as shown in the
example below:

Figure 144: Without rendering control

Figure 145: With rendering control

To avoid this problem, each tile rendering must use the same
parameters. The VLIM will compute and propagate the correct statistics
and force their application to the whole set rendering.

Coverage and Image Servers 487

Figure 146: Very Large Image Management process

488 Coverage and Image Servers

The VLIM will work with any WCS provider (SimpleProvider,
IndexProvider, …) on any type of coverage data (GeoTIFF, NITF, …).

Per WMS request:

• The VLIM will not consume more memory than the computed using
the following formula, i.e. 2 * VERYLARGETRIGGER *
VERYLARGETRIGGER * coverage_bits_per_sample *
coverage_number_of_bands + 2 * VERYLARGETRIGGER *
VERYLARGETRIGGER * 4 bytes.

• Note that the VLIM consumes more memory than the VLCM for the
same pixel sizes requested. If an OutOfMemory exception is
thrown, the VERYLARGETRIGGER value must be reduced.

• The VLIM will not consume more hard-drive space than the one
needed for two times the uncompressed image result, i.e. 2 *
pixel_width * pixel_height * 4 bytes.

If the data set is homogeneous (bands count, data type), it is possible
to accelerate and enhance the quality of the Normalize contrast-
enhancement filter, it is possible to specify the minimum and maximum
values of the whole coverage data set in the provider entry, for example:

<PARAM NAME="DataStatistics" VALUE="7,1,-100,16000" />

Where

• 7 is the number of bands of the data set

• 1 is the data type (unsigned short)

• -100 id the data minimum value

• 16000 is the data maximum value

The data value is found in the following table:

Data type value

byte 0

unsigned short 1

short 2

integer 3

float 4

Coverage and Image Servers 489

Doing this, the same parameters will always be applied to the
Normalize filter and the statistics gathering will be avoided, speeding up
the rendering.

Note that, it is not possible to specify the Histogram filter parameters,
as they are totally dependant of the data to render.

If no contrast enhancement is necessary to render the source coverage
data, it is better to remove the normalize filters from the SLD rules, this
will speed up the rendering.

Temporary Files Can Be
Very Big

To ensure no disk full will arise, make sure your temporary directories
are located on a disk with enough free space:

• Set tmppath parameter in your WCS provider: <PARAM
NAME="tmppath" VALUE="E:/storage/”>. This will be used to
store GDAL results and the result Geotiff when the output format is
not GeoTIFF.

• Set TEMPMANAGER to the properly sized disk in the configuration part
of your providers.fac: <TEMPMANAGER DIR="E:\storage2\" />.
This will be used to store the result if the STORE=TRUE option is used
(any format).

• Set the Java temporary directory: launch the servlet engine using
following option: -Djava.io.tmpdir="E:/storage3/". This will
be used to store the result Geotiff stream when the output format is
GeoTIFF.

• If TEMPMANAGER is not set, the temp files could be in
TOMCAT_HOME/work/.../erdas-apollo.

• You can verify that the java.io.tmpdir VM variable is properly
set. Its value is visible in the output of the request=debug&cmd=env
request on the servlet.

• If you choose to use the STORE=TRUE option, the final image will be
copied to the final location. Meaning that it will be found twice on the
disk during a few seconds.

Configuration The choice of the VERYLARGETRIGGER parameter value is critical:

• If VERYLARGETRIGGER value is too small, the manager will be
called when it is not necessary. The processing time is bigger when
the manager is involved as the work is done on the hard drive.

double 5

490 Coverage and Image Servers

• If VERYLARGETRIGGER value is too big, some OutOfMemory
exception will be thrown if the allocated RAM is smaller than (n *
VERYLARGETRIGGER²) bytes (see A. and B.).

Limitations • We do not use the internal GDAL stitching capabilities. It means that
for n granules, n calls will be made to GDAL.

• For very large output (larger than 5000x5000 pixels), the WCS uses
a disk-based output production, to avoid OutOfMemory errors. In
that case, the number of calls to GDAL will be larger, with at least
one per granule. More precisely, by default, the WCS will extract
pieces of granules of less than 25000 pixels.

• The VLIM GIF output will work only if the source coverage data has
only one band. The VLIM cannot output colored GIF files.

• Known VLCM output sizes limits:

• Known VLIM output sizes limits:

Issues • Resin and Tomcat don't seem to be able to output very large images
provided by our servlets. They rapidly produce a OutOfMemory
error. We currently found no other turnaround than requesting
STORE=TRUE, and then retrieving the file manually.

• When the output is produced in the temporary JVM directory, it is
kept for a while. We still have to investigate if it is a fixed period, or
until next query, or other.

Examples • All the CIB NITF granules (468) requested (all extent, 35328x52223
pixels) in GeoTIFF on a heavy-loaded Windows 2000 machine, with
option STORE=TRUE. 40 minutes (including 5 minutes for copying the
file into the final directory). The output is 1.8 GB.

• Single 200 MB Geotiff, on a Windows 2000 machine. The output
format is JPEG2000, 50000x50000 pixels. 15 minutes (including 10
minutes for GDAL to convert the produced Geotiff into JPEG2000
by GDAL). The output is 214 MB.

format limits

NITF 2GB

format limits

BMP 4GB

GIF 2GB

JPEG 4GB (max dimensions 65500x65500)

Coverage and Image Servers 491

• Single 200 MB Geotiff, on a Windows 2000 machine. The map
request output format is PNG, 35000x35000 pixels (3 bands). 18
minutes (including 7 minutes for GDAL to convert the produced
Geotiff into PNG by GDAL). The output is 93 MB.

492 Advanced Configuration

Advanced Configuration
This appendix describes some advanced data configuration aspects for
the Advanced Scenarios chapter. As the scenarios chapter details step-
step procedures, this chapter describes the additional configuration
necessary to set up these scenarios.

Metadata URL As soon as Metadata are loaded or encoded using your preferred ISO
19139 Metadata Encoder tool, it is possible to link them to the WMS or
WFS through MetadataURL entries in the Capabilities document. This
section explains the details of this configuration.

Templates The template will be a standard template using {} to define parameters.
The following parameters will be defined

• {name}: replaced by the layer name, the feature name

• {metaname}: same behavior as {name}, kept for backward
compatibility

• {host}: replaced by the servlet host name

• {port}: replaced by the servlet port

• {context}: replaced by the context path and always starts with a / or
is empty

• {servlet}: replaced by the servlet path and always starts with a / or
is empty

• {id}: replaced by the provider id

• {server}: the server path that is equivalent to
http://{host}:{port}{context }{servlet}/{id}

This definition is used in all references to metadata/legend templates in
this document (in the default specification the association to a WMS
layer, and the association to a WFS feature type).

GLOBAL TEMPLATE

The provider factory file may contain a METADATA section that may
define the default metadata document location template used by all
providers. This default will be defined through the TEMPLATE attribute.

Advanced Configuration 493

Storage The metadata can be stored on a specific database or in a file system.
The servlet uses different mechanisms to handle file system and
database storage:

For Database storage, it is up to the user to define the appropriate URL.
An example can be "http://{host}/GetMetadata ID={id}&TYPE={name}".
A WFS can be a good candidate for this kind of (remote)storage.

For File storage, the metadata associated with one element
(FeatureType, Layer) are supposed to be defined in a single file. This
file is identified by the provider ID and the element name(Note: the file
system(s) is defined for all providers).

This file can be stored onto a user defined directory (absolute path on
the file system). The absolute directory path should be provided with the
DIR attribute of the METADATA and the template should be defined as
{absolute}{id}/{name}.xml. The {absolute} is mandatory to mark the use
of the global file system, it will be replaced by "". In order to work, the
user running the container (servlet) engine must read the permissions
on that directory.

This file can also be stored onto a servlet relative directory, i.e., relative
to the resource package under the servlet package. The template
should be defined as {relative}{id}/{name}.xml. (the .xml is part of the
template). The {relative} is mandatory to mark the use of the relative file
system. It will be replaced by "". In both cases of file storage, the final
URL (the one written in the capabilities) will be an http request using an
internal mechanism to retrieve those files.

The servlet will check if the files are available in the expected
directory with the expected name. If absent, the tag is not set in the
capabilities document, except if the "AlwaysGenerateMetadata"
tag is set in the mapping file.

Metadata Configuration
in the WMS and WCS
Servlets

Each provider can have a METAURL entry which specifies the
metadata template. If this entry is empty or equalts to "inherit", the
global template will be used. The defined template will be used to define
the metadata URL associated to each layer of the provider. It is not
possible to associate a metadata to specific layers only.

Example:Sample Providers.fac for Metadata URL

<CREATE ID="PROXYNASA"
 JCLASS="com.ionicsoft.wmtmap.provider.proxy.ProxyProvider">
 <PARAM NAME="URL" VALUE="http://cost.gsfc.nasa.gov:8250/viz-
bin/wmt.cgi" />
 <PARAM NAME="METAURL" VALUE="" />
 <!-- used the default value -->
</CREATE>

494 Advanced Configuration

<CREATE ID="ATLANTA_IMAGE"
 JCLASS="com.ionicsoft.wmtmap.provider.image.SimpleProvider">
 <PARAM NAME="path" VALUE="home/Erdas/ApolloServer/data/erdas-
apollo/images/atlanta_landsat/40379914.ecw" />
 <PARAM NAME="METAURL" VALUE="{relative}/{name}.xml" />
</CREATE>

<CONFIGURATION>
 <METADATA TEMPLATE="{absolute}{id}/{name}.xml"
 DIR="/home/Erdas/ApolloServer/config/erdas-
apollo/metadata/map" />
</CONFIGURATION>

Metadata Configuration
in the WFS Servlet

The metadata template is defined in the mapping file and is explicitly
associated to each layer or feature type. The <Metadata> tag (under
the Info tag) defines the template for the specific feature type. If the
content of the tag is empty or equals "inherit", a default template will be
used. If the tag is not defined, the feature type has no metadata URL.
The mapping file may contain a <Option> tag whose
<DefaultMetadata> child defines the default template appropriate for
this provider. This enhances the standard mechanism (which defines a
template for ALL providers) by defining a template per provider. The
default template is computed as follows: if a default is provided through
the Option tag, it is used (including empty, "inherit" and "nometadata"
values; otherwise, the default provided through the factory file is used.

The <Metadata> tag holds a "type" attribute that lets you publish,
in the WFS capabilities, the type of the metadata document.
Allowed values are: TC211 (the default), 19115, 19139 and FGDC.

Example:Sample Mapping File for Metadata URL

<xsd:schema>
 ...
 <Option>
 <!-- define the provider default template-->

<DefaultMetadata>http://www.metadata.org/Get?ID={name}</Default
Metadata>
 </Option>
 <Mapping >
 <SQL name="wfs:ESA_FIRE">
 <Primary name="ESAF_ID" type="xsd:integer" fid="true"/>
 <Element name="NDVI" nameSQL="ESAF_NDVI" />
 <Element name="STATION" nameSQL="ESAF_STATION" />
 <Geometry name="Geometry" nameSQL="GEOM"/>
 </SQL>
 <Info name="wfs:ESA_FIRE">
 <SRS>EPSG:4326 EPSG:4327</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180." miny="-90."
 maxx="180." maxy="90." />

Advanced Configuration 495

 <Metadata/>
 <!-- use default one-->
 </Info>
 <Info name="wfs:ESA_FIRE2">
 <SRS>EPSG:4326 EPSG:4327</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180." miny="-90."
 maxx="180." maxy="90." />
 <Metadata
type="19139">http://{host}/MetadataServlet?REQUEST=GetFeature&a
mp;TYPENAME=METADATA&ID={name}</Metadata>
 </Info>
 </Mapping>
 ...
</xsd:schema>

Legend URL The OGC WMS capabilities documents can contain URLs to small
bitmaps that represent Legend snippets. This is intended to permit the
construction of a legend in any kind of application.

Similar to the "MetadataURL" system, ERDAS permits further configure
of the services to publish LegendURL tags in the WMS capabilities
documents. But an additional parameter, named {style}, is also
available to build icons whose name contains the style name.

The servlet will check if the files are available in the expected
directory with the expected name. If absent, the tag is not set in the
capabilities document, except if the "AlwaysGenerateLegend" tag
is set in the mapping file.

The Map
Generation
Transformer

Introduction The Map Generation (MapGen) transformer is an additional
configuration in the WFS mapping file used for changing the default
server response to the GetMap request. This configuration can speed
up processing at certain scales, extract unnecessary data columns and
apply conditional filtering, grouping and ordering clauses to the original
requests.

Please ensure that the Feature Mapping process detailed in GML
Application Schema and Mapping to Databases and Feature
Mapping Tags is fully understood before using the MapGen
transformer.

496 Advanced Configuration

Using MapGen This section describes examples where Map Generation
Transformation can be used to ensure smart and fast output. The use
cases described here are only a few examples and one may find other
practical applications of MapGen. The main aim of MapGen is to
improve the map generation performance by not referencing
unnecessary information from the data source.

Properties Selection

When mapping GI data, sometimes only the feature's geometric
property, or location information is of interest.

Imagine a simple world map displaying only the boundaries of countries
is to be created. However, there is a set of linear data for country
boundaries that also includes several other properties such as
population and economic statistics.

A GetMap that queries only the geometry will greatly improve
performance. However, a GetFeatureInfo query needs to be perfomred
on a country and all the attribute values must be retrieved. Without a
particular configuration, the GetMap request will extract all property
values and geometry. If there are too many properties to retrieve, the
GetMap request will return with poor performance. Using MapGen,
select the specific properties to be employed for map generation.

In the example below, the CITY feature has many properties
(ADMIN_LEVEL, POPULATION, ECOSTAT, BOUNDARY). For each
MapGen block, the <Field> tags mention only the properties that will be
extracted in GetMap requests.

Scale Dependent Filtering

The goal is to display cities in the world map. At the world scale, all cities
cannot be displayed as this will result in thousands of points
overlapping thus rendering the map unreadable. Moreover, executing
this GetMap request may return poor performance due to the large
quantity of features.

Therefore, to logically portray cities, extract only the major cities at
world level and then display more and more smaller cities depending on
the zoom level. This can also be done with MapGen by using feature
properties filters for each specified scale range.

In the example below, the CITY feature has several MapGen blocks,
one per scale range. A <Where> tag expresses a filtering condition for
each block so that only the cities with the adequate administration
levels are extracted in each scale range.

Advanced Configuration 497

Scale Dependent Geometries

Imagine that the cities to display actually have two geometries: a point
to denote the center of the city and a polygon that denotes the city's
extent. Using MapGen, either the polygon or point can be displayed
depending on the scale of the map.

In the example below, the CITY feature has one published geometry,
named "Boundary" but the underlying table has a second geometric
column, named "CENTER". In the first MapGen block (which denotes
the highest scale), the BOUNDARY column has been replaced with the
CENTER column.

Example of MapGen for the CITY Feature Type

[...]
<Mapping>
 <SQL name="wfs:CITY">
 <Primary name="ID" nameSQL="ID" />
 [...]
 <Element name="ADMIN_LEVEL" nameSQL="LEVEL" />
 <Element name="POPULATION" nameSQL="POP" />
 <Element name="ECOSTAT" nameSQL="STAT" />
 <Element name="Boundary" nameSQL="BOUNDARY" />
 <!-- another geometric column exists, named CENTER, for the
city center point -->

 <MapGen scaleMin="1000000">
 <Field name="Boundary">CENTER</Field/>
 <Where>ADMIN_LEVEL>4</Where>
 </MapGen>

 <MapGen scaleMax="1000000" scaleMin="100000">
 <Field name="Boundary"/>
 <Where>ADMIN_LEVEL=4</Where>
 </MapGen>

 <MapGen scaleMax="100000">
 <Field name="Boundary"/>
 <Where>ADMIN_LEVEL<4</Where>
 </MapGen>

 </SQL>
<Mapping>
[...]

Scale Dependent Table

Several data tables can be set up, each having the same structure but
a different set of data and each to be invoked at a different scale range.
The configuration is explained in section 5.10 below.

498 Advanced Configuration

MapGen Tags and
Attributes

The following DTD portion defines the MapGen elements and
attributes. For more information about the mapping tags, refer to the
appendix on feature type mappings.

<!ELEMENT MapGen (Field?, NoIdGeneration?, NoQueryGeneration?,
Where?, Last?)
<!ATTLIST MapGen
scaleMin NMTOKEN #IMPLIED
scaleMax NMTOKEN #IMPLIED >
<!ELEMENT Field (#PCDATA) >
<!ATTLIST Field name CDATA #REQUIRED>
<!ELEMENT NoIdGeneration EMPTY >
<!ELEMENT NoQueryGeneration EMPTY >
<!ELEMENT Where (#PCDATA) >
<!ELEMENT Last (#PCDATA) >

The <MapGen> Tag MapGen is defined in the WFS feature mapping file by one or more
<MapGen> tags that are embedded in the <SQL> mapping tag for each
feature type.

<Mapping>
 ...
 <SQL name="wfs:myFeature">
 <MapGen>
 ...
 </MapGen>
 </SQL>
 ...
</Mapping>

The existing mapping configuration tags are still needed to provide
default behavior and other types of requests such as GetCapabilities,
GetFeatureInfo, DescribeFeatureType, and GetFeature. Remember
that the MapGen tag only applies to GetMap requests.

Feature Properties
(Re)definition

Each <MapGen>...</MapGen> block must mention the properties that
will be used to portray features, except if the <NoQueryGeneration>
element is used. This is done with a set of <Field> tags:

<Field name="name1">name2</Field>

"Name1" is the name of the Feature's property and "name2" is the name
of the field to actually use in the underlying data source. "name2" only
has to be set if the "name1" property has to be replaced with something
else.

Advanced Configuration 499

The properties can also be redefined with an SQL clause. For example,
if the property has a numerical value, apply a formula and use it in
conjunction with a "group by" operator.

<Field name="DATE">MAX(ESAF_DATE)</Field>

If the <Field> tag is not provided, properties (including geometry)
will NOT be extracted thus making the data impossible to render.

A <NoIdGeneration> tag might be used so that no check to compute the
feature identifier is made. Refer to the following example that has been
configured for optimal GetMap response time.

[...]
<Mapping>
 <SQL name="wfs:POPULATION">
 <Primary name="ID" nameSQL="ID" />
 <Element name="YEAR_" nameSQL="YEAR_" />
 <Element name="COUNTRY" nameSQL="COUNTRY" />
 <Element name="NAME1" nameSQL="NAME1" />
 <Element name="NAME2" nameSQL="NAME2" />
 <Element name="URBAN_RURAL" nameSQL="URBAN_RURAL" />
 <Element name="POPULATION1" nameSQL="POPULATION1" />
 <Element name="MALE1" nameSQL="MALE1" />
 <Element name="FEMALE1" nameSQL="FEMALE1" />
 <Element name="HOUSEHOLDS1" nameSQL="HOUSEHOLDS1" />
 <Element name="LEVEL2_NAME" nameSQL="LEVEL2_NAME" />
 <Element name="LEVEL3_NAME" nameSQL="LEVEL3_NAME" />
 <Element name="LEVEL4_NAME" nameSQL="LEVEL4_NAME" />
 [...]
 <Element name="GEOM" nameSQL="GEOM" />

 <MapGen>
 <Field name="GEOM"/>
 <NoIdGeneration/>
 </MapGen>

 </SQL>

 <Info name="wfs:POPULATION">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180." miny="-90."
maxx="180." maxy="90." />
 </Info>

</Mapping>
[...]

500 Advanced Configuration

scaleMin and scaleMax In order to emulate the last two use cases presented, the scale interval
attributes in the MapGen tag need to be set. Setting this interval by
mentioning one or more MapGen sections at one per scale interval
allows varying the display and filtering in accordance to the scale value
of the request.

<MapGen scaleMin="1000" scaleMax="2000">
[...]
</MapGen>

In this example, the mapping configuration is such that MapGen will be
used between scales 1:1000 and 1:2000. For all other scales, classical
mapping that maps all the columns in an <Element> tag is used.

The scale taken into consideration is the "standard scale" as
defined in several OGC specifications. This scale is computed with
the assumption that the size of a pixel on the final rendering device
is 0.28mm x 0.28mm. The value of the standard scale used when
generating a map can be viewed by appending the parameter
NEEDSTAT=TRUE to the GetMap query.

Filter - The "Where" Tag An optional <Where> ... </Where> block can be added to previous
WHERE clauses in a query sent to the data source. This is particularly
useful to define a filter on one or more fields as described in the
example below.

The syntax of the WHERE clause is simply:

<Where>clause</Where>

where the clause is a string which must be valid for the data source.
Beware that the quote character could need encoding as "'" (e.g.:
<Where>DSG IN
('PPL','PPLC','PPLA')</Where>).

The following example combines scale ranges and filters.

[...]
<Mapping>
 <SQL name="wfs:POPULATION">
 <Primary name="ID" nameSQL="ID" />
 [...]
 <Element name="GEOM" nameSQL="GEOM" />

 <MapGen scaleMin="50000000">

Advanced Configuration 501

 <Field name="POPULATION1"/>
 <Field name="GEOM"/>
 <Where>POPULATION1>100000</Where>
 </MapGen>

 <MapGen scaleMax="50000000" scaleMin="10000000">
 <Field name="POPULATION1"/>
 <Field name="GEOM"/>
 <Where>POPULATION1>10000</Where>
 </MapGen>

 <MapGen scaleMax="10000000">
 <Field name="POPULATION1"/>
 <Field name="GEOM"/>
 <Where>POPULATION1>1000</Where>
 </MapGen>

 </SQL>

 <Info name="wfs:POPULATION">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180." miny="-90."
maxx="180." maxy="90." />
 </Info>
<Mapping>
[...]

In the example, cities with more than 100 000 inhabitants have been
extracted from the data source and will be portrayed at or above a scale
of 1:50 000 000.

The "Last" Tag This optional tag permits a grouping or sorting clause to be appended
onto an SQL statement.

<Last>clause</Last>

Below is an example that uses the <Last> tag to redefine the property
and scale range. The features in the example are points and the
underlying database is Oracle Spatial.

Example of MapGen with a <Last> Tag

<Mapping>
 <SQL name="wfs:ESA_FIRE">

 <Primary name="ESAF_ID" type="xsd:integer" />
 <Element name="DATE" nameSQL="ESAF_DATE" />
 <Element name="HOUR" nameSQL="ESAF_HOUR" />
 <Element name="NDVI" nameSQL="ESAF_NDVI" />
 <Element name="STATION" nameSQL="ESAF_STATION" />
 <Element name="NUMERO" nameSQL="ESAF_ID" />
 <Element name="LAT" nameSQL="ESAF_LAT" />
 <Element name="LONG" nameSQL="ESAF_LONG" />

502 Advanced Configuration

 <Element name="Geometry" nameSQL="GEOM" />

 <Table nameSQL="ESA_FIRE" alias="EF" />

 <MapGen scaleMin="100000001">
 <Field name="DATE">MAX(ESAF_DATE)</Field>
 <Field name="HOUR">MAX(ESAF_HOUR)</Field>
 <Field name="STATION">MAX(ESAF_STATION)</Field>
 <Field name="NUMERO">count(*)</Field>
 <Field
name="Geometry">MDSYS.SDO_GEOMETRY(2001,NULL,MDSYS.SDO_POINT_TY
PE(

round(EF.GEOM.SDO_POINT.X,0),round(EF.GEOM.SDO_POINT.Y,0),NULL)
,NULL,NULL)</Field>
 <Last>group by round(EF.GEOM.SDO_POINT.Y, 0),
round(EF.GEOM.SDO_POINT.X, 0)</Last>
 <NoIdGeneration/>
 </MapGen>

 </SQL>

 <Info name="wfs:ESA_FIRE">
 <SRS>EPSG:4326</SRS>
 <BoundingBox SRS="EPSG:4326" minx="-180." miny="-90."
maxx="180." maxy="90." />
 <Dimension name="TIME" property="DATE">?</Dimension>
 </Info>
</Mapping>

To clarify this example:

• The MapGen mapping is applied above the scale of 1:100 000 000.

• The <Last> tag implements the following SQL statement: GROUP
BY ROUND(EF.GEOM.SDO_POINT.Y, 0),
ROUND(EF.GEOM.SDO_POINT.X, 0). This means that the
coordinates are rounded to an integer and then a GROUP BY is
done. Use of this tag completely changes the nature of the feature
collection meaning that if one square degree contains several
features, only one feature is outputted.

• The <NoIdGeneration> tag must be included since the "GROUP
BY" tag loses the primary key of the features when it builds a new
one.

• The properties of the features have now been redefined. Since a
new feature will result from the use of the "GROUP BY" tag, SQL
operations such as MAX, AVERAGE, COUNT(*) can be performed.
Also, new geometries can be created through the Oracle syntax:

MDSYS.SDO_GEOMETRY(2001,NULL,MDSYS.SDO_POINT_TYPE(
round(EF.GEOM.SDO_POINT.X,0),round(EF.GEOM.SDO_POINT.Y,0),NULL)
,NULL,NULL).

Advanced Configuration 503

Warning: MapGen and
Portrayal Rules

Each time a GetMap query is received by the ERDAS APOLLO WFS
servlet (and if the requested map scale is in the bounds defined in one
of the MapGen tag), the MapGen configuration is used to build the data
extraction request. The features extracted are then portrayed by
application of portrayal styles and rules. Please ensure that the
MapGen configuration outputs the properties needed by the portrayal
as the styles and rules applied to the features properties that have been
extracted.

Scale Dependent Table Set up several data tables each having the same structure but a
different set of data and each to be invoked at a different scale range.
The configuration consists of defining <TableScale> tags in the WFS
mapping file, under the <Table> element. Each TableScale will mention
a scale range (scaleMin and scaleMax attributes), the table name
(nameSQL attribute), and possibly the user and alias attributes with a
purpose similar to the corresponding elements of the <Table> element.

For GetMap and GetFeatureInfo requests from which the Scale value
can be deducted, the appropriate table will automatically be chosen.

For GetFeature requests, the server currently does not analyze the
Filter to determine the scale. Add a parameter:

• In HTTP-Get, add the STDSCALE parameter to the request;

• In HTTP-POST, add the stdScale attribute to the <GetFeature>
element.

Sample Mapping code with Table scales:

<Table nameSQL="COUNTRY" >
 <TableScale scaleMin="0" scaleMax="50000" nameSQL="COUNTRY_50K"
/>
 <TableScale scaleMin="50000" scaleMax="1000000"
nameSQL="COUNTRY_1M" />
</Table>

The "scale" mentioned in this section refer to the "Standard Scale"
as defined by OpenGIS in the WMS 1.1.1 specification.

Data filtering A WFS allows a set of data filtering possibilities through the use of the
OGC Filter Encoding specification which is implemented in ERDAS
APOLLO servlets.

504 Advanced Configuration

However, additional filtering on the map services may be necessary.
This section explains the various ways of building such filters and how
to use filters in the GetMap requests.

Solution 1: Use ERDAS APOLLO Server specific parameter "FILTER"
that offers the complete power of the OGC Filter Encoding specification
in the GetMap requests. This only applies to WMS services on top of
vector data, i.e., ERDAS APOLLO WFS servlet.

Solution 2: Configure the WFS so that one or more "Dimension" tags
appear in the WMS capabilities complying to OGC WMS 1.1.1
specification. Then the Dimension name can be added to the GetMap
requests for additional filtering.

Advanced Security Several authentication mechanisms can be set up to request the client
application to authenticate when querying a J2EE servlet engine or
application server. Generally, the application servers allow three
authentication mechanisms, BASIC, DIGEST and PKI, as well as the
set up of a secure channel. In this chapter, the sample code is based
on the BASIC mechanism, thus enabling authentication and
authorization. In order to ensure integrity, non-repudiation and
confidentiality, use SSL and PKI.

Depending on the expected security granularity, several modes are
possible:

• A declarative security based on the J2EE mechanism gives coarse-
grained security

• A basic ERDAS APOLLO security at provider level

• A fine-grained security can be done using ERDAS APOLLO Server
specific components (like the JAAS interfaces of Java2)

• Some security at the data source level, like that provided by Oracle
or a proxied WMS.

Each of those authentication modes are described in the following sub-
sections of this chapter.

The browser-based clients rely on a login popup to allow user
authentication. If the request is sent by an application (API,
Desktop editor,etc.) instead of a web browser, the popup won't
display. This problem has been solved in the ERDAS client GUIs
by allowing a prefix to be added to the URL of the user name and

Advanced Configuration 505

password to produce a URL like
http://user:password@localhost:8080/erdas-
apollo/map/ATLANTA_IMGIDX . The GUI removes the 'user name
and password' prefix before calling the service, but uses it to
negotiate with the service.

Coarse-Grained Security The J2EE-based declarative security is derived from the set up of an
authentication "Realm" containing the definition of users and groups.
Several options are possible, depending on the type of application
server used:

• Description in an XML file

• JDBC connection to a database

• LDAP directory

The role names that are associated with users should be written in
lowercase. Mixed case or uppercase can cause association of the
role with a user to fail.

Declarative Security in Apache Tomcat

For Apache Tomcat, the configuration of a Realm using LDAP is done
in a configuration file named conf/server.xml . The configuration may
look like:

<Realm className="org.apache.catalina.realm.JNDIRealm"
debug="99"
 connectionName="cn=Manager,dc=mycompany,dc=com"
 connectionPassword="secret"
 connectionURL="ldap://ldapserver:389"
 userPassword="userPassword"
 userPattern="uid={0},ou=people,dc=erdas,dc=com"
 roleBase="ou=groups,dc=mycompany,dc=com"
 roleName="cn"
 roleSearch="(uniqueMember={0})"
/>

In that case, information about the users and their groups is centralized
in an LDAP directory. Each user can belong to one or more group.
Rights are assigned to groups or to users in the web.xml file through the
concept of "security-role". A "role-name" is either a user or a group.

506 Advanced Configuration

The web.xml configuration file of the web application (like erdas-apollo,
...) holds the access rights relating to this web application. The following
example defines a BASIC authentication through LDAP in Apache
Tomcat. One role existing in the LDAP server is activated:
esp_administrator. A set of URL-patterns filter the access to each
service. Please refer to Tomcat documentation
(http://jakarta.apache.org/tomcat/index.html) or the Java Servlet
specification for more details on allowed URL patterns.

<!-- Administration servlet -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Administration servlet</web-
resource-name>
 <description>Server Administration</description>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>esp_administrator</role-name>
 </auth-constraint>
 </security-constraint>

 <!-- Roles and realm definition -->
 <security-role>
 <role-name>esp_administrator</role-name>
 </security-role>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Apollo Realm</realm-name>
 </login-config>

Note: In the "login-config" tag, set "realm-name" to "default" in order to
use the settings defined in TOMCAT_HOME/conf/tomcat-users.xml
instead of those from an LDAP source.

PKI and SSL Configuration

PKI is another security configuration at the servlet engine level. Note
that configuring PKI security may affect the behavior of the ERDAS
servlets.

At the current time, ERDAS servlets behind such a "coarse-grained"
setup in the servlet engine do support parameters based on SSL or TSL
and only accept one class of access. A firewall configuration to allow the
SSL port is also needed.

At this time, fine-grained PKI security is not supported. This means
that if the servlet engine is set up in this manner, the ERDAS
servlets may not respond properly to all requests.

Advanced Configuration 507

The SSL configuration of the application server can be authenticated in
the following manners:

• Client Authentication

• Client Access Policy

• Server Authentication

• Encryption of Messages

Do not mix secure and non-secure data in the same site. Several
browsers do not allow this type of behavior.

Basic ERDAS APOLLO
Security

ERDAS APOLLO provides a basic authentication mechanism available
at the provider level, to limit the access to the service to authenticated
users. At run time, the user must be authenticated before being allowed
to retrieve data. The configuration is done in the providers.fac using
the "security" parameter. Its value can either be:

• a string, composed of a couple of blank-separated names: "name
password"

• a string, composed of an encrypted couple of blank-separated
names, for Digest mode authentication. This encrypted string is
obtained by the tool com.ionicsoft.security.web.AuthentifierFactory,
packaged in tools/ows.

• "provider" to redirect the authentication to the underlying data
server, if it supports it.

The following configuration shows a sample provider enhanced with
basic provider-level security. The security value is obtained by running
the encryption tool:

cd /home/Erdas/APOLLO/tools/ows

. ../setclasspath.sh

java -cp $IA_CLASSPATH
com.ionicsoft.security.web.AuthentifierFactory -user scott -
password tiger -realm "Apollo Realm"

a620102876920d9c85c297ed9a9bed3c

<CREATE ID="BOSTON_ORA"
 JCLASS="com.ionicsoft.wfs.provider.oracle.OracleProvider">

508 Advanced Configuration

 <PARAM NAME="name" VALUE="BOSTON_ORA"/>
 <PARAM NAME="title" VALUE="Boston on Oracle"/>
 <PARAM NAME="connect"
VALUE="oracle://myhost/user+myuser/password+mypassword/SID+mysi
d"/>
 <PARAM NAME="types" VALUE="boston_ora.xsd" />
 <PARAM NAME="mapping" VALUE="boston_ora.xml" />
 <PARAM NAME="security" VALUE="a620102876920d9c85c297ed9a9bed3c"
/>
</CREATE>

Fine-Grained Security Most applications will set up coarse-grained security, but some will also
require constraints more related to the GIS world. ERDAS APOLLO
Server supports that functionality through resolvers, credentials, and
filters. The configuration is a three-step job:

• First, define the way authentication has to be handled by registering
the proper resolver and subject filler in the resolver.xml file.

• Assign a set of credentials to each user declared in the web.xml file.
This assignment is done in the credential.xml file.

• Finally, inform the engine of what set of filters are to be used.

The distribution includes a set of sample configuration files in the
erdas-apollo web app under
WEB-INF\classes\com\ionicsoft\security\auth\resource.

To activate them for ALL providers, remove the ".wcssample" suffix
for WCS-related configurations or the ".wfssample" for WFS-
related files.

To activate them for a single provider, copy them to another place
(for example, near the providers.fac file) and set the
SECURITYFILTER and SECURITYRESOLVER parameters to the
path of those files.

Setting Up the Subject Resolver

The J2EE application servers provide the authentication mechanism.
To enable fine grained security, more information is needed other than
just a user name and a set of roles. Fine grained credentials are
required. it is the responsibility of the resolvers to ensure that all the
information is available before processing the requested action.

Advanced Configuration 509

One major function of the resolver is to populate the Subject with its
credentials. The next section describes how to configure XML
credentials. Other types of credentials declarations are possible (LDAP
server, Oracle Label Security, SOAP header, Oracle WebGate, ...) but
need specific developments which are out of the scope of this guide.
The basic file to configure is the
com/erdas/security/auth/resource/resolver.xml file, or an alternate
similar file if the "securityresolver" parameter is defined at the provider
level.

Example:resolver.xml Configuration File using XML Credentials

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
 <register JCLASS="com.ionicsoft.security.auth.TestResolver" />
 <register
JCLASS="com.ionicsoft.security.auth.XMLSubjectFiller">
 <param NAME="credentialsurl" VALUE="./credential.xml"/>
 </register>
</configuration>

In most cases, the com.ionicsoft.security.auth.TestResolver must be
used as the first resolver. ERDAS APOLLO Solution Toolkit users can
develop other resolvers to use custom security sources.

The <register> tag can have a <param> sub-element with a NAME and
VALUE attribute. If the Subject Filler is a simple text file, the JCLASS is
"com.ionicsoft.security.auth.SimpleTextfileSubjectFiller" and the
<param> sub-element locates the file with NAME="file" and
VALUE="<path to the file>". For an XML Subject Filter, the JCLASS is
"com.ionicsoft.security.auth.XMLSubjectFiller", the param NAME is
"credentialsurl" and the VALUE is an URL, which default value is
"./credential.xml".

Note: ERDAS APOLLO Solution Toolkit users can develop other
subject fillers to use custom credential sources, such as Oracle Label
Security.

Adding Credentials to The Users

As soon as the user is authenticated, add some credentials. In the
coarse-grain configuration part, one credential has already been
defined to give the right to access the service. This right is defined in the
security-constraint tag of the WEB-INF/web.xml file. If restricting access
to the service, tune that value to restrict access to a given set of users.

510 Advanced Configuration

But behind this simple, coarse grained, access control, the user may
require some more specific rights. This is done in an XML resource
called com/erdas/security/auth/resource/credential.xml, as in the
example below. Note that the location of this resource can be changed
through the "credentialurl" parameter in the resolver.xml file.

As of ERDAS APOLLO and ERDAS APOLLO Data Manager , many
types of credentials are defined and supported. The credentials are
configured through their Java class name (or an equivalent short name)
and can be activated through a filter Java class name (or an equivalent
short name). The table below lists most of these credentials and the
corresponding class and short names. The "LoginCredentialMap"
credential is described in the next section.

Table 66: Geographic Credentials

Credential Type Description Credential Class Filter Class

Layer Access Creden-
tial

to assign a set of WMS
layers and styles to a user

com.ionicsoft.security.cre
dential.LayerAccessCred
ential (short name: Layer,
in a "type" attribute)

com.ionicsoft.security.aut
h.LayerAccessFilter
(short name:
LayerAccess, in a "type"
attribute)

Feature Type Access
Credential

to assign a set of WFS
feature types and
operations to a user

com.ionicsoft.security.cre
dential.FeatureTypeAcce
ssCredential (short name:
FeatureType)

Filter on feature type
access:
com.ionicsoft.security.aut
h.FeatureTypeAccessFilt
er (short name:
FeatureTypeAccess, in a
"type" attribute); Filter on
operation:
com.ionicsoft.security.aut
h.OperationAccessFilter
(short name:
OperationAccess, in a
"type" attribute)

Coverage Type Access
Credential

to assign a set of WCS
coverage types to a user

com.ionicsoft.security.cre
dential.CoverageAccessC
redential (short name:
Coverage)

com.ionicsoft.security.aut
h.impl.CoverageAccessFi
lter (short name:
CoverageAccess, in a
"type" attribute)

Advanced Configuration 511

Example: credential.xml Configuration File

Spatial Area Access
Credential

to assign a set of
geographic areas
(bounding boxes) to a
user

com.ionicsoft.security.cre
dential.SpatialAreaAccess
Credential (short name:
SpatialArea)

For a WMS request:
com.ionicsoft.security.aut
h.SpatialAreaAccessFilter
(short name:
SpatialAreaAccess, in a
"type" attribute); For a
WCS request:
com.ionicsoft.security.aut
h.CoverageSpatialAreaAc
cessFilter (short name:
CoverageSpatialAccess,
in a "type" attribute)

Scale Range Access
Credential

to assign a set of scale
ranges to a user

com.ionicsoft.security.cre
dential.ScaleRangeAcces
sCredential (short name:
ScaleRange)

For a WMS request:
com.ionicsoft.security.aut
h.ScaleAccessFilter
(short name:
ScaleAccess, in a "type"
attribute); For a WCS
request:
com.ionicsoft.security.aut
h.impl.CoverageScaleAcc
essFilter (short name:
CoverageScaleAccess, in
a "type" attribute)

Size Access Credential to limit the maximum
image size allowed
(attributes WIDTH and
HEIGHT of a GetMap
request)

com.ionicsoft.security.cre
dential.SizeAccessCrede
ntial (short name:
ImageSize)

Only applies to a WMS
GetMap request:
com.ionicsoft.security.aut
h.impl.SizeAccessFilter
(short name: SizeAccess,
in a "type" attribute)

BooleanCredential to accept or reject all
messages

none To accept all messages:
com.ionicsoft.security.aut
h.TrueFilter (short name:
AlwaysTrue, in a "type"
attribute); To reject all
messages:
com.ionicsoft.security.aut
h.FalseFilter (short name:
AlwaysFalse, in a "type"
attribute)

Table 66: Geographic Credentials (Continued)

512 Advanced Configuration

Inside a credential set, the set of credentials are checked against the
active filters (see next section). If at least one succeeds, access is
granted. For example, if a given role is associated with several Spatial
Area Access Credentials for several zones, the Spatial Area Access
filter will succeed if at least one of the zones contains the box of the
query.

Layers and Styles: If the credential is given without mentioning a set of
styles, use the tag <PARAM NAME="layers"> with a comma-separated
list of layer names. If the filtering has to apply at the layer and style level,
each layer name should appear in a <PARAMBLOCK> tag, and the
styles are given in a <PARAM NAME="styles"> tag inside the
PARAMBLOCK.

Feature Types: the credential must contain a PARAM tag with
NAME="featuretypes", and the value is a comma-separated list of
feature type names. A second PARAM may be added, to restrict the set
of operations allowed on the given feature types. The NAME is
"operations", and the VALUE is a comma-separated list of operation
names, or "*" for all. The supported operation names are: query, insert,
update, delete, lock.

Coverages: the credential must contain a PARAM tag with
NAME="coverages", and the value is a comma-separated list of
coverage names.

Credential IDs: They are mandatory but currently unused. Make them
unique inside a credential.xml file for future use.

<?xml version="1.0" encoding="UTF-8" ?>
<credentials>
 <credentialset subject="dm">
 <credential ID="LayerAccessCredential"
JCLASS="com.ionicsoft.security.credential.LayerAccessCredential
">
 <PARAMBLOCK NAME="hydro">
 <PARAM NAME="styles" VALUE="default,simple"/>
 </PARAMBLOCK>
 <PARAMBLOCK NAME="highways">
 <PARAM NAME="styles" VALUE="default"/>
 </PARAMBLOCK>
 </credential>
 <credential ID="FeatureTypeAccessCredential"
JCLASS="com.ionicsoft.security.credential.FeatureTypeAccessCred
ential">
 <PARAM NAME="featuretypes" VALUE="protectedareas"/>
 <PARAM NAME="operations" VALUE="query"/>
 </credential>
 <credential ID="SpatialAreaAccessCredential"
JCLASS="com.ionicsoft.security.credential.SpatialAreaAccessCred
ential">

Advanced Configuration 513

 <PARAM NAME="box" VALUE="SRID=26986;POLYGON((228945.0
889853.0, 233537.0 889853.0.0,
 233537.0 894397.0, 228945.0 894397.0, 228945.0
889853.0.0))"/>
 </credential>
 <credential ID="ScaleRangeAccessCredential"
JCLASS="com.ionicsoft.security.credential.ScaleRangeAccessCrede
ntial">
 <PARAM NAME="minScale" VALUE="15000"/>
 <PARAM NAME="maxScale" VALUE="20000"/>
 </credential>
 <credential id="SizeAccessCredential"
JCLASS="com.ionicsoft.security.credential.SizeAccessCredential"
>
 <PARAM NAME="maxWidth" VALUE="1000"/>
 <PARAM NAME="maxHeight" VALUE="1000"/>
 </credential>
 </credentialset>
 <credentialset subject="admin">
 <credential ID="LayerAccessCredential"
JCLASS="com.ionicsoft.security.credential.LayerAccessCredential
">
 <PARAM NAME="layers"
VALUE="roads,hydro,highways,land_use,protectedareas"/>
 </credential>
 <credential ID="FeatureTypeAccessCredential"
JCLASS="com.ionicsoft.security.credential.FeatureTypeAccessCred
ential">
 <PARAM NAME="featuretypes"
VALUE="roads,hydro,highways,land_use,protectedareas"/>
 <PARAM NAME="operations" VALUE="*"/>
 </credential>
 </credentialset>
 <credentialset subject="ld">
 <credential ID="CoverageAccessCredential"
JCLASS="com.ionicsoft.security.credential.CoverageAccessCredent
ial">
 <PARAM NAME="coverages"
VALUE="MOD09GHK.EastCoast_1_Grid_L2g_2d" />
 </credential>
 <credential ID="SpatialAreaAccessCredential"
JCLASS="com.ionicsoft.security.credential.SpatialAreaAccessCred
ential">
 <PARAM NAME="box" VALUE="SRID=4326;POLYGON((-74.197 39.6632,-
74.197 44.0858,
 -69.3613 44.0858,-69.3613 39.6632,-74.197 39.6632))"/>
 </credential>
 </credentialset>
</credentials>

Adding Filters to The Services

The last step is to configure the service to filter on advanced security
constraints. ERDAS APOLLO currently allows many different fine
grained security checks, some corresponding to a given access
credential defined above, and some applying unconditionally:

514 Advanced Configuration

• For the WMS, filter on the layer name and style name using the
Layer Access Filter

• For the WMS, filter on the spatial extent of the query using the
Spatial Area Access Filter

• For the WMS, filter on the scale of the query using the Scale Access
Filter

• For the WMS, restrict the size of the image that a GetMap can
produce, using the Size Access Filter

• For the WFS, filter on the feature type name using the Feature Type
Access Filter.

• For the WFS, filter on the feature type name using the Feature Type
Access Filter.

For the WFS, filter on the operation name using the Operation Access
Filter.

• For the WCS, filter on the coverage type name using the Coverage
Access Filter.

• For the WCS, filter on the spatial extent of the query using the
Coverage Spatial Area Access Filter.

• For the WCS, filter on the scale of the query using the Coverage
Scale Access Filter.

• For any type of request, apply a "allow all" filter using the True Filter.

• For any type of request, apply a "reject all" filter using the False
Filter.

These fine-grained security checks are configured in the file
com/erdas/security/auth/resource/filter.xml, or an alternative file if the
"securityfilter" parameter is set at the provider level. Each entry in this
file configures a security check.

The following example shows a filter.xml file filtering on all types of
filters. To disable one or more of those filters, remove it from that file.

Example:filter.xml Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
 <role name="dm">
 <and>

Advanced Configuration 515

 <filter ID="ScaleFilter"
JCLASS="com.ionicsoft.security.auth.ScaleAccessFilter"/>
 <filter ID="SpatialFilter"
JCLASS="com.ionicsoft.security.auth.SpatialAreaAccessFilter"/>
 <filter ID="LayerFilter"
JCLASS="com.ionicsoft.security.auth.LayerAccessFilter"/>
 <filter ID="FeatureTypeFilter"
JCLASS="com.ionicsoft.security.auth.FeatureTypeAccessFilter"/>
 <filter ID="SizeAccessFilter"
JCLASS="com.ionicsoft.security.auth.impl.SizeAccessFilter"/>
 </and>
 </role>
 <role name="admin">
 <or>
 <filter ID="AdminLayerFilter"
JCLASS="com.ionicsoft.security.auth.LayerAccessFilter"/>
 <filter ID="AdminFeatureTypeFilter"
JCLASS="com.ionicsoft.security.auth.FeatureTypeAccessFilter"/>
 </or>
 </role>
 <role name="ld">
 <and>
 <filter ID="WCSSpatialFilter"
JCLASS="com.ionicsoft.security.auth.impl.CoverageSpatialAreaAcc
essFilter"/>
 <filter ID="WMSSpatialFilter"
JCLASS="com.ionicsoft.security.auth.SpatialAreaAccessFilter"/>
 <filter ID="CoverageFilter"
JCLASS="com.ionicsoft.security.auth.impl.CoverageAccessFilter"/
>
 <filter ID="LayerFilter"
JCLASS="com.ionicsoft.security.auth.LayerAccessFilter"/>
 </and>
 </role>
 <role name="trusted">
 <filter ID="FullAccessFilter"
JCLASS="com.ionicsoft.security.auth.TrueFilter"/>
 </role>
 <!-- role with no name applies to all other roles -->
 <role>
 <filter ID="NoAccessFilter"
JCLASS="com.ionicsoft.security.auth.FalseFilter"/>
 </role>
</configuration>

The <role> element is optional in the hierarchy. If not found, the filters
apply to all roles.

The <and>, <or> and <not> tags can be applied to filters and a
hierarchy of those logical operators can be used.

When applicable, a <filter> tag can have a <param> sub-element with
a NAME and a VALUE parameter.

516 Advanced Configuration

Future Work

Today it is only possible to store credentials and filters in XML files. It is
projected to extend this to storage into other credential sources, such
as LDAP directories.

However, the credential classes can also be registered in the
Application Server and then configured and used without the need for
an XML file. It implies writing a custom SubjectFiller to read the
credentials and pass them to the servlet.

The set of credentials and filters will extend depending on customer
needs.

Security at the Data
Source Level

ERDAS APOLLO providers are designed to allow publishing of data
without having to design a brand new data set. Some configuration is
required in order to connect to an existing data server. When security
concerns arise, security enforced at the data server level is optimum.
This security should filter up and cross over to the publication layer with
minimal configuration.

The following situations are often encountered:

• The data source is a strong database system, like Oracle, and it
supports security. In order to let the authentication information cross
the provider, set the "security" parameter to the value "provider". As
soon as the provider type itself implements the method to translate
the authentication information (user, password, etc.) into the
database proprietary language and the method to extract the
authentication capabilities, there is nothing to do as everything is
transparent.

• For such a strong database system, like Oracle, a more advanced
security can be configured to map the login credential for the service
with the login to the database. This is achieved by configuring a
"LoginCredentialMap" entry in the credential.xml file, like described
in the table and the sample XML code below.

• The data source is an OGC-compliant WMS or WFS. The provider
is a WMS (or WFS) Proxy Provider and the security is automatically
proxied with no configuration needed. However, if the WMS (or
WFS) needs to be secure, the "security" parameter permits this. If it
is to be opened without the user authenticating, the "user" and
"password" parameters will let the proxy WMS (or WFS)
authenticate against the proxied WMS (or WFS). More detail in
Provider Types.

Advanced Configuration 517

• For such an OGC-compliant WMS or WFS, the security for the
proxy service can be mapped to the security to the proxied service.
The "LoginCredentialMap" configuration described below applies,
as it lets configure the user/password at the proxied service level
based on the actually encoded user/password for each service URL
and type.

Table 67: Login Credential Map

Credential Type Parameters Description

Login Credential Map This credential type defines login
credential

Credential Class:
com.ionicsoft.security.credential.Lo
ginCredentialMap (short name is
"Login", in a "type" attribute)

defaultuser the user used for the default login
credential (optional; if not set, the
initial connection user is used)

defaultpassword the password associated to the
default user (optional)

the rest of the parameters can be
grouped into a PARAMBLOCK so
that they can be repeated

user the user name

password the user password

url the url for which the user/password
is provided. Can be any kind of url
as an HTTP one or a simple name.
If the login relates to a connection
to a database, the url value must
correspond to the "credentialname"
parameter for the provider.

service If the login relates to a connection
to a database, the service value
must be "database". If the URL is
for an OGC service, this parameter
will have one of the supported
OGC service types ("WMS",
"WFS", "WCS", ...)(optional
parameter)

action If the database connection switch
can be achieved through a proxy
session, this parameter can be
used to activate it. The only
supported value is "proxysession".

518 Advanced Configuration

<?xml version="1.0" encoding="UTF-8" ?>
<credentials>
 <credentialset subject="dm">
 <credential ID="LoginCredentialMap"
JCLASS="com.ionicsoft.security.credential.LoginCredentialMap">
 <PARAM NAME="defaultuser" VALUE="scott"/>
 <PARAM NAME="defaultpassword" VALUE="tiger"/>
 <PARAMBLOCK>
 <PARAM NAME="user" VALUE="boston"/>
 <PARAM NAME="password" VALUE="boston"/>
 <PARAM NAME="url" VALUE="BOSTON_ORA"/>
 <PARAM NAME="service" VALUE="database"/>
 </PARAMBLOCK>
 <PARAMBLOCK>
 <PARAM NAME="user" VALUE="usa"/>
 <PARAM NAME="password" VALUE="usa"/>
 <PARAM NAME="url" VALUE="USA_ORA"/>
 <PARAM NAME="service" VALUE="database"/>
 </PARAMBLOCK>
 </credential>
 </credentialset>
 <credentialset subject="bs">
 <credential type="Login">
 <PARAMBLOCK>
 <PARAM NAME="user" VALUE="guest" />
 <PARAM NAME="password" VALUE="anonymous" />
 <PARAM NAME="service" VALUE="WFS" />
 <PARAM NAME="url"
VALUE="http://remotehost/servlet/wfs/MyService" />
 </PARAMBLOCK>
 </credential>
 </credentialset>
</credentials>

Login Credential Map
Example

This section provides a step-by-step sequence of operations in order to
reach a configuration enabling fine-grain security with two types of
credentials: FeatureType filtering, a Oracle Database connection
mapping. It is running under Tomcat 5 with a ERDAS APOLLO 9.3
release. Each step benefits a small explanation and a piece of
configuration code. The example is intended to be as simple as
possible to allow a rapidly working example.

The environment is a BOSTON_ORA provider on top of a BOSTON
Oracle schema. The BOSTON user is granted access to the schema,
whereas the ATLANTA one is not.

1. In the TOMCAT_HOME/conf/tomcat-users.xml, define a couple of
users and roles. Let's name them MASS (for Massachusetts) and GEO
(for Georgia). The updated file could look like this:

<tomcat-users>
 <role rolename="tomcat"/>
 <role rolename="role1"/>
 <role rolename="manager"/>

Advanced Configuration 519

 <role rolename="admin"/>
 <role rolename="mass"/>
 <role rolename="geo"/>
 <user username="tomcat" password="tomcat"

roles="tomcat"/>
 <user username="role1" password="tomcat" roles="role1"/>
 <user username="both" password="tomcat"

roles="tomcat,role1"/>
 <user username="admin" password="admin"

roles="admin,manager"/>
 <user username="mass" password="mass" roles="mass"/>
 <user username="geo" password="geo" roles="geo"/>
</tomcat-users>

2. In the web.xml file of your web application, typically under
TOMCAT_HOME/erdas-apollo/WEB-INF/web.xml, add three blocks of
information at the end of the file, after the <welcome-file-list> block. You
have to add a <security-constraint> block, a <login-config> block and a
<security-role> block. The end of the file could look like this:

...
<welcome-file-list>
 <welcome-file>index.html</welcome-file>
</welcome-file-list>

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Vector</web-resource-name>
 <url-pattern>/vector/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>mass</role-name>
 <role-name>geo</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>default</realm-name>
</login-config>

<security-role>
 <description>for Boston</description>
 <role-name>mass</role-name>
</security-role>
<security-role>
 <role-name>geo</role-name>
</security-role>

520 Advanced Configuration

The <security-constraint> block associates a set of roles to a pattern of
services. The <login-config> tells Tomcat where and how to
authenticate the users who are logged in. Here BASIC authentication is
applied, and the default realm, i.e. the tomcat-users.xml file, is the place
where the roles are defined. The <security-role> blocks declare the
active roles.

3. Activation of fine-grain security: it is done by renaming the three
*.xml.sample files located in WEB-
INF/classes/com/ionicsoft/security/auth to remove the ".sample" suffix.
The newly named files have the default names sought by the servlet.
Note that those files can also be relocated, by setting the securityfilter
and securityresolver parameters for your provider.

4. The factory content of the resolver.xml file does not need any change,
as it addresses the credential.xml file.

5. In the credential.xml, add a couple of credential sets, one for "mass"
and one for "geo". For "mass", a FeatureType access credential is
defined, and on "geo" a LoginMapCredential is defined to force a
connection with the Oracle user "Atlanta". The credential.xml
configuration looks like this:

<credentialset subject="mass">
 <credential ID="FeatureTypeAccessCredential"

JCLASS="com.ionicsoft.security.credential.FeatureTypeAccessCred
ential">

 <PARAM NAME="featuretypes"
VALUE="protectedareas,place_names,hydro"/>

 </credential>
</credentialset>

<credentialset subject="geo">
 <credential ID="LoginCredentialMap" type="Login">
 <PARAMBLOCK>
 <PARAM NAME="user" VALUE="atlanta"/>
 <PARAM NAME="password" VALUE="atlanta"/>
 <PARAM NAME="url" VALUE="BOSTON_CREDENTIAL"/>
 <PARAM NAME="service" VALUE="database"/>
 </PARAMBLOCK>
 </credential>
</credentialset>

Note 1: Beware that only one credential set per role is defined in the
credential.xml. If there are more than one, each will be checked until
one succeeds.

Advanced Configuration 521

Note 2: As soon as the attempt to connect to the database through a
different user succeeds, the default schema is no more the original one.
The new user will fail to address the tables if their schema is not given.
To avoid this, add a "user" attribute to the "Table" elements in the
mapping file, so that each request to one of those tables will prefix them
with the schema name. The change can look like this:

...
<SQL name="wfs:roads">
 <Table nameSQL="ROADS" user="BOSTON_ORA"/>
 <Primary name="MRD_ID" type="xsd:float" fid="true"/>
 <Element name="wfs:FNODE_" nameSQL="FNODE_"/>
 <Element name="wfs:TNODE_" nameSQL="TNODE_"/>
 <Element name="wfs:LPOLY_" nameSQL="LPOLY_"/>
...

Note 3: The LoginCredentialMap configuration makes the assumption
that no particular configuration was achieved on Oracle side. In some
cases, Oracle allows to define proxies and in those cases the
connection switch can be achieved according to this proxy setting.

6. The providers.fac entry for this provider does not need to be modified in
order to activate fine-grain security: the existence of a resolver.xml is
sufficient for that security to be checked. However, the
LoginCredentialMap credential has to been linked with the provider. It
is achieved through the "url" tag in the credential.xml file, which should
match the "credentialname" in the providers.fac. The updated provider
configuration could look like this:

<CREATE ID="BOSTON_ORA"
JCLASS="com.ionicsoft.wfs.provider.oracle.OracleProvider">

 <PARAM NAME="OWSINFOURL" VALUE="./wfs_md.xml"/>
 <PARAM NAME="TITLE" VALUE="Boston on Oracle"/>
 <PARAM NAME="TYPES" VALUE="boston_ora.xsd"/>
 <PARAM NAME="MAPPING" VALUE="boston_ora.xml"/>
 <PARAM NAME="CONNECT"

VALUE="oracle://myhost:1521/sid+orcl/user+boston/password+bosto
n/defaultRowPrefetch+10"/>

 <PARAM NAME="CREDENTIALNAME" VALUE="BOSTON_CREDENTIAL"/>
 <!-- uncomment to relocate the files in the same directory

as the providers.fac
 <PARAM NAME="SECURITYRESOLVER" VALUE="myresolver.xml"/>
 <PARAM NAME="SECURITYFILTER" VALUE="myfilter.xml"/>
 -->
</CREATE>

7. Finally, the last file to adapt is filter.xml, to activate the FeatureType
credential on "mass" and to activate the checks on "geo". Its update can
look like this:

522 Advanced Configuration

<role name="mass">
 <filter ID="FeatureTypeFilter"

JCLASS="com.ionicsoft.security.auth.FeatureTypeAccessFilter"/>
</role>

<role name="geo">
</role>

8. The first test to run is to execute from your browser a GetFeature on the
place_names table and log as mass/mass. The request can look like
this:

 http://localhost:8080/erdas-
apollo/vector/BOSTON_ORA?VERSION=1.0.0&REQUEST=GetFeature&SERVI
CE=WFS&TYPENAME=place_names&MAXFEATURES=20

Upon success, a GML collection displays. If it fails, the displayed log
message and the Tomcat log file (under TOMCAT_HOME/logs) gives
more detail on the reason of the failure.

9. After closing and restarting your browser, or alternatively after clearing
the HTTP authentication cache on the client side, the same request can
be executed while logging in as geo/geo. If the Oracle Atlanta user is
not granted access to the Boston schema, a security denial message is
responded.

Oracle Proxy Session
Example

Mapping an authenticated user with an Oracle user used to establish
the connection can be achieved with the LoginCredentialMap
configuration described above. When the provider is instantiated, the
connection is established with the connection string (including user and
password) defined in the providers.fac . As soon as a user sends a
request to the service for authentication, the LoginCredentialMap
definition found in the credential.xml file is used to achieve the mapping
between this user and the Oracle user name to use to change the
connection.

At that moment, the service is opening a new connection to the Oracle
database using this new Oracle user.

Another use case is to keep the initial connection and just change the
session so that the user connecting the database is just switched. It lets
the user take advantage of the proxy session mechanism supported by
Oracle 10g. The step-by-step configuration of such a use case is
described in this section, but if you are already familiar with the Oracle
proxy session mechanism and with ERDAS fine-grain security, you just
need to add an "action" parameter to the LoginCredentialMap block to
tell the service that the change in the Oracle connection is through that
proxy-session mechanism.

Advanced Configuration 523

Warning: Due to limitations to older versions of Oracle database, an
Oracle 10g Release 2 is the minimum needed for the proxy session use
case to run. With older versions, the proxy user will not be authorized to
connect to the database.

1. A couple of Oracle users need to be defined, one with minimal rights for
the initial service-to-database connection, and one with more privileges
but being restricted to connect to the database through the other user's
grants. If those users are named bostonmini and bostonadmin, the
sequence of SQL statements can be:

create user bostonmini identified by bostonmini;
grant connect to bostonmini;
create user bostonadmin identified by bostonadmin;
grant create session to bostonadmin;
grant select, insert, update, delete on

boston_ora.place_names to bostonadmin;
alter user bostonadmin grant connect through bostonmini;

2. In the providers.fac, the connection string should use the "bostonmini"
user so that the connection can be established to the database with no
more than the ability to create that connection. Additionally, a
"credentialname" parameter must be set to achieve the link with the
credential. The value can be "BOSTON_CRED". The configuration in
the providers.fac could look like this:

<CREATE ID="BOSTON_ORA"
JCLASS="com.ionicsoft.wfs.provider.oracle.OracleProvider">

 <PARAM NAME="OWSINFOURL" VALUE="./wfs_md.xml"/>
 <PARAM NAME="TITLE" VALUE="Boston on Oracle"/>
 <PARAM NAME="TYPES" VALUE="boston_ora.xsd"/>
 <PARAM NAME="MAPPING" VALUE="boston_ora.xml"/>
 <!-- The initial user is replaced with the proxying one
 <PARAM NAME="CONNECT"

VALUE="oracle://myhost:1521/sid+orcl/user+boston_ora/password+b
oston_ora"/>

 -->
 <PARAM NAME="CONNECT"

VALUE="oracle://myhost:1521/sid+orcl/user+bostonmini/password+b
ostonmini"/>

 <PARAM NAME="CREDENTIALNAME" VALUE="BOSTON_CRED"/>
</CREATE>

3. In the credential.xml, the LoginCredentialMap mentions the
"bostonadmin" user, sets the "url" parameter to "BOSTON_CRED" to
reference the provider, and sets the "action" parameter to
"proxysession" so that the service does a session switch. The code in
the credential.xml could look like this:

...
<credential ID="LoginCredentialMap" type="Login">
 <PARAMBLOCK>
 <PARAM NAME="user" VALUE="bostonadmin"/>

524 Advanced Configuration

 <!-- NO password is needed as the connection is achieved
through bostonmini

 <PARAM NAME="password" VALUE="bostonadmin"/>
 -->
 <PARAM NAME="url" VALUE="BOSTON_CRED"/>
 <PARAM NAME="service" VALUE="database"/>
 <PARAM NAME="action" VALUE="proxysession"/>
 </PARAMBLOCK>
<credential>
...

Masking Fine-grained security allows to accept or reject WMS queries
depending on matching geospatial criteria. But it is only binary: allow or
deny. And when the restriction is by Bounding Box, that limitation is
sometimes too strong: some users would still like to get a map back,
with the restricted box rubbed out.

Moreover, a BBOX is a rectangle. In some situations, a more flexible
geometry like a polygon is expected.

This chapter describes how a masking mechanism can be applied to
complement or to replace the fine-grain security by BBOX.

Setting up a Masker Service

Before masking can be activated for a vector or coverage service, the
masking geometries and roles have to be configured. They can be
either stored in a shapefile whose path is mentioned in the masked
service configuration, or in a WFS of any kind (GML, Oracle, ...) as soon
as the proper types are defined.

For masking in a shapefile, the masking configuration consists of a
single line that will look like:

If the definition is in the providers.fac:
<PARAM NAME="featureServer"
VALUE="wfsf:shape:/home/Erdas/APOLLO/data/erdas-
apollo/shapes/boston;srs=26986"/>

or if it is in a mapping file:
<Server>wfsf:shape:/home/Erdas/APOLLO/data/erdas-
apollo/shapes/boston;srs=26986</Server>

Masking in a WFS is possible as soon as the masker WFS is properly
configured. The configuration examples below are provided in the
distribution, under C:/Erdas/APOLLO/data/erdas-
apollo/security/masking.

Advanced Configuration 525

The source of masking polygons has to be defined, configured, and
each polygon should be associated to a role. For vector data masking,
the source has to be a WFS exposing a feature type that contains a
geometry property, a masked role property and optionally a masking
mode property. The schema could look like this (GML 2 syntax):

<xsd:element name="Mask" substitutionGroup="gml:_Feature"
type="wfs:Mask"/>
<xsd:complexType name="Mask">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="GEOMETRY" minOccurs="0"
type="gml:PolygonPropertyType"/>
 <xsd:element name="MaskingRole" minOccurs="0"
type="xsd:string"/>
 <xsd:element name="MaskingMode" minOccurs="0"
type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Based on this schema, the simplest way is to set up a WFS over a GML
file. That GML file is easily produced by a GetFeature request on a
WFS, if the polygons already exist. Post-processing of the GML
document to update the set of properties and fill the MaskingRole and
MaskingMode values. If the masking polygons do not exist yet, the fast
path is to configure a WFS-T and use any feature creation tool to draw
and save polygons. The mapping file of such a WFS-T over Oracle
could look like this:

<xsd:schema
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:wfs="http://www.erdas.com/wfs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 targetNamespace="http://www.erdas.com/wfs"
 elementFormDefault="qualified">
 <wfs:Mapping>
 <SQL name="wfs:Mask">
 <Table nameSQL="MASK"/>
 <Primary name="MASK_ID" type="xsd:integer" fid="generated" />
 <Element name="wfs:MaskingRole" nameSQL="MASKINGROLE"/>
 <Element name="wfs:MaskingMode" nameSQL="MASKINGMODE"/>
 <Element name="wfs:GEOMETRY" nameSQL="GEOMETRY"/>
 </SQL>
 </wfs:Mapping>
 <Info name="wfs:Mask">
 <Title>Boston Mask</Title>
 <Abstract>Boston Mask information</Abstract>
 <Operations>*</Operations>
 <SRS>EPSG:26986</SRS>

526 Advanced Configuration

 <BoundingBox SRS="EPSG:26986" minx="227317.3811199999"
miny="889948.2662399999" maxx="238669.28896000012"
maxy="901300.1740800001"/>
 <!--
 <Metadata/>
 <Legend/>
 -->
 </Info>
 <Export generation="exportOnly">
 <Add name="wfs:Mask"/>
 </Export>
</xsd:schema>

To create the table and indexes, the following statements can be used:

CREATE TABLE MASK
(
MASK_ID INTEGER NOT NULL,
GEOMETRY MDSYS.SDO_GEOMETRY,
MASKINGROLE VARCHAR2(30),
MASKINGMODE VARCHAR2(30)
);

INSERT INTO USER_SDO_GEOM_METADATA VALUES('MASK', 'GEOMETRY',
MDSYS.SDO_DIM_ARRAY(MDSYS.SDO_DIM_ELEMENT('X', 232000.,
238000., 0.005),
MDSYS.SDO_DIM_ELEMENT('Y', 889000.0, 895000.0, 0.0005)),41051);

CREATE INDEX I_MASK_GEOM ON MASK(GEOMETRY) INDEXTYPE IS
MDSYS.SPATIAL_INDEX;

Masking of Vector Data

Masking of vector data can be configured in a few simple steps.

1. The service (WMS over WFS) to be masked has to be secure. The
Coarse-Grain Security section above fully applies.

2. The source of masking polygons has to be configured, as described in
the previous section, in a shapefile or in a WFS.

3. The service to benefit from the mask has to be updated to reference the
masking service. This is done in its mapping file, by the addition of a
<Masking> tag. It will look like this:

<Masking>
 <Server>BOSTON_ORA_MASK</Server>
 <!-- it could also be the URL of a WFS prefixed with wfs:
 <Server>wfs:http://myhost:8080/erdas-

apollo_s/vector/BOSTON_MASKER</Server>
 or a Shapefile path prefixed with wfsf:shape: and

optionally suffixed with the SRS if not 4326

Advanced Configuration 527

 <Server>wfsf:shape:/home/Erdas/ApolloServer/data/erdas-
apollo/shapes/boston;srs=26986</Server>

 -->
 <Type>Mask</Type>
 <!-- The default is the first feature type exposed by the

WFS -->
 <Geometry indexed="true">GEOMETRY</Geometry>
 <!-- default geometry name is "geometry" -->
 <Role>MaskingRole</Role>
 <Mode default="TRANSPARENT">MaskingMode</Mode>
 <!-- default Mode property name is "mode".
 If set to "unused", then the mode property is ignored and

the default value is always used -->
 <!-- default can be one of "TRANSPARENT" or "OPPOSITE"

(also existing: BACKGROUND, OPPOSITE_BACKGROUND) -->
 <Color>TRANSPARENT</Color>
 <!-- it can also be a real color, such as "red" or

"0XFFFFFF" -->
</Masking>

4. The last step is to tell the masked WFS that security information has to
be passed to the underlying provider. This is done by setting the
SECURITYRESOLVER parameter to "container". The entry in the
providers.fac is:

<PARAM NAME="SECURITYRESOLVER" VALUE="container" />

Even though the masked service exposes both WMS and WFS
interfaces, only the WMS requests (GetMap, GetFeatureInfo)
requests will benefit from the masking configuration. No WFS-type
request (GetFeature, Transaction) will filter the data based on the
masking configuration.

Masking of Coverage Data

Masking of coverage data defined in a WCS is configured in a way
similar to vector data, except that it is done in the WCS providers.fac
instead of in a mapping file. The masking parameters are slightly
different, but have the same semantic.

1. The service (WMS over WCS) to be masked has to be secure. The
Coarse-Grain Security section above fully applies.

2. The source of masking polygons has to be configured, like described in
the first section above, in a Shapefile or in a WFS.

3. The service to benefit from the mask has to be updated to reference the
masking service. This is done in the providers.fac, by filling the
"Masking Info" compound property. The resulting tags will look like this:

 <PARAMBLOCK NAME="masking">

528 Advanced Configuration

 <PARAM NAME="featureServer" VALUE="BOSTON_ORA_MASK"/>
 <!--
 the id alone implies that the provider is defined in the

same providers.fac file as the WCS.
 This is allowed! But that service will not be accessible

via its URL, only from the masked WCS.
 it could also be the URL of a WFS prefixed with wfs:
 "wfs:http://myhost/erdas-apollo-

demo_s/vector/BOSTON_MASKER"
 or a Shapefile path prefixed with wfsf:shape: and

optionally suffixed with the SRS if not 4326
 "wfsf:shape:/home/Erdas/ApolloServer/data/erdas-

apollo/shapes/boston;srs=26986"
 -->
 <PARAM NAME="featureType" VALUE="Mask"/>
 <!-- The default is the first feature type exposed by

the WFS -->
 <PARAM NAME="featureProperty" VALUE="GEOMETRY"/>
 <!-- default geometry name is "geometry" -->
 <PARAM NAME="roleProperty" VALUE="MaskingRole"/>
 <!-- If not specified no role is used to filter the

geometry -->
 <PARAM NAME="modeProperty" VALUE="MaskingMode"/>
 <!-- If not specified, the defaultMode value is used.
 <PARAM NAME="defaultMode" VALUE="TRANSPARENT"/>
 <!-- default can be one of "TRANSPARENT", "OPPOSITE",

"BLURRING" (also existing: BACKGROUND, OPPOSITE_BACKGROUND) -->
 <PARAM NAME="color" VALUE="TRANSPARENT"/>
 <!-- it can also be a real color, such as "red" or

"0XFFFFFF".
 It can be a fixed value or TRANSPARENT or BACKGROUND.
 Note that BACKGROUND has currently the same effect as

TRANSPARENT.
 -->
 </PARAMBLOCK>

4. The last step is to tell the masked WFS that security information has to
be passed to the underlying provider. This is done by setting the
SECURITYRESOLVER parameter to "container". The entry in the
providers.fac is:

<PARAM NAME="SECURITYRESOLVER" VALUE="container" />

Table 68: The masking parameters

FEATURESERVER Defines the url of the remote server
or the id in the same factory file.
Mandatory.

FEATURETYPE Defines the feature type containing
the mask information. Optional. If not
defined, the first feature type
exported by the server is used.

Advanced Configuration 529

FEATUREPROPERTY The name of the property containing
the mask geometry. Optional. If not
defined, the first geometric property
is used

ROLEPROPERTY The name of the property containing
the role associated to the mask.
Optional. If not defined, no role is
used. If defined, the retrieved masks
are those associated to the role of
the current request.

MODEPROPERTY The name of the property containing
the type of mask to apply. Optional. If
defined, the actual type of mask will
be computed by the value of the
property and the DEFAULTMODE
parameter. If not defined, the
DEFAULTMODE parameter will be
also ignored and the type of mask will
be TRANSPARENT or BLURRING (if
the RESOLUTION parameter value
is greater than 0).

DEFAULTMODE Defines the default type of mask.
Possible values are defined in Table
69:Types of mask. Optional. The
default is TRANSPARENT.

COLOR Defines the masking color, It can
have the value "TRANSPARENT",
"BACKGROUND", a color name,
"rgb(x,y,z)" or an hex string.
"TRANSPARENT" means use a
transparent color, "BACKGROUND"
means use the background color of
the request if available. Optional.
Default value is "TRANSPARENT".

COMPOSITE Optional. If defined (the only useful
value is "alpha"), it tells the mask
process to use alpha composition
when masking areas. In order to be
taken into account, it implies that the
masking color (COLOR) has an
alpha channel and GetMap requests
are made using
TRANSPARENCY=TRUE and with
image format supporting
transparency (e.g. image/png).

Table 68: The masking parameters (Continued)

530 Advanced Configuration

The type of mask is determined in the following way:

If the parameter MODEPROPERTY is defined, the type of mask is
given by the value of the property. If this value is null or unknown, the
value of the DEFAULTMODE parameter is taken. If this parameter is
not defined, TRANSPARENT is taken as type of mask.

5. If the parameter MODEPROPERTY is not defined, the type of mask is
BLURRING if RESOLUTION is greater than 0, otherwise the type of
mask is TRANSPARENT.

Since the coverage framework responds to WCS and WMS
interfaces, masking will apply to both. But for the WCS interface
(i.e. GetCoverage request), the notion of color does not really exist.
In that case, defining a COLOR can lead to unexpected results.
COLOR should not be applied to GetCoverage requests, except for
coverage which are basically RGB images. There is no such
problem with the WMS interface.

RESOLUTION Defines the size of the pixel in meter
below that blurring masking applies.
If you set 10m, a image with more
resolution having pixel size of 5m will
contained blurred area.

Table 69: Types of mask

BLURRING It will blurred the geometry mask if
the RESOLUTION is greater than 0,
otherwise it behaves like a
transparent mask.

TRANSPARENT It will fill the geometry mask by the
masking color.

OPPOSITE It will fill the exterior of the geometry
mask by the masking color.

TRANSPARENT_BACKGROUND Mostly like TRANSPARENT but uses
the request background color by
default.

OPPOSITE_BACKGROUND Mostly like OPPOSITE but uses the
request background color by default.

Table 68: The masking parameters (Continued)

SRS Configuration Parameters 531

SRS Configuration Parameters

Structure Each coordinate transform system that follows the specifications of
OGC is defined in a series of XML files. The entry file is called sref.xml
and is located under com.ionicsoft.sref.impl.resource. Each file
contains a series of tags that need to be populated in order to build the
coordinate systems database.

Inside this file, the user can change the option value and/or add other
systems definition.

The main tags are defined in the table below and described in the
following sections.

Table 70: SRS ConfigurationTags

Tag Attributes Description

SREF The root element of the XML file

Main descendant of SREF

STORAGE

TYPE The type of storage to use. Allowed
values are FILE or MEMORY

OPTION Define one option

NAME The option name

VALUE The option value

INCLUDE include a file

NAME The file name to include (usually a
relative path)

OPTIONAL if yes the file is an optional one and
no error is generated if it is missing

INCLUDEESRI Include the ESRI mapping file (see
structure info below)

NAME The file name to include

OPTIONAL If yes the file is an optional one and
no error is generated if it is missing

NAMESPACE Defines some additional
namespaces of ids

532 SRS Configuration Parameters

All tags (except the root) can be mixed and freely used. The only
constraint is the object definition rules cannot be broken (see below).
However; it is advisable to have a main document containing only
'include' and option instructions and documents containing only object
definitions.

STORAGE The storage tag should be the first child of the SREF root tag. It defines
the type of storage to use. Currently two types are available:

1. FILE: Uses a btree file as database support

2. MEMORY: Uses a memory map. This is intended for small SRS
database.

OPTION The option tag defines options (hints) about different conversions to the
SRS or Data Manager.

The following options are defined:

1. useostn97: specify if the ostn97 conversion is used to go from
OSGB1936 to WGS84. This conversion uses 1,000,000 bands that are
stored into memory.

2. parseesriid: specify if the INCLUDEESRI instruction should really parse
the esri ids file.

3. unknownDatumAsWGS84: if set (default is yes) the unknown datum
are considered as equal to WGS84 during datum transformation. If not
set an error will be produced during datum transformation.

ASSOCIATE Associates some other ids to an
existing id

Main definition tags (these tags are also direct descendant of SREF)

UNIT Defines a unit

MERIDIAN Defines a meridian

SPHEROID Defines a spheroid

DATUM Defines a datum

GEOCS Defines a geographic system

PROJCS Defines a projected system

COORDINATESYSTEM Defines a coordinate system Used to define the axis unit of a
coordinate system. This allow to
support XXXX ids.

Table 70: SRS ConfigurationTags (Continued)

SRS Configuration Parameters 533

NOTE: the option names are case insensitive and their usual values are
'yes' or 'no' (also case insensitive).

INCLUDE The 'include' and 'includeesri' tags allow the inclusion of other files.
They allow splitting the configuration into several files. The 'include' tag
acts as if the content of the file was inline. The format of the esri file is
a simple text file where each line is in the form id=name. It defines
associations between EPSG id and ArcSde system name.

The current structure of the sref.xml is the following

Example:Sample sref.xml File

<?xml version="1.0" encoding="utf-8" ?>
<SREF>
 <!-- the storage type may be MEMORY or FILE -->
 <STORAGE TYPE="MEMORY"/>
 <!-- include the user option -->
 <INCLUDE NAME="option.xml" OPTIONAL="YES" />
 <!-- include the user option -->
 <INCLUDE NAME="useroption.xml" OPTIONAL="YES" />
 <!--include the standard definition -->
 <INCLUDE NAME="factorysref.xml" />
 <!-- include the area definition -->
 <INCLUDE NAME="arearef.xml" OPTIONAL="YES" />
 <!-- include the erdas user definition -->
 <INCLUDE NAME="ionicsref.xml" OPTIONAL="YES" />
 <!-- include the user definition-->
 <INCLUDE NAME="usersref.xml" OPTIONAL="YES" />
 <!-- include the esri id file-->
 <INCLUDEESRI NAME="esri.txt" OPTIONAL="YES" />
 <!-- include the ogc id file-->
 <INCLUDEESRI NAME="ogc.txt" OPTIONAL="YES" />
 </SREF>

All those files are provided in the distribution except the usersref.xml. It
is intended to contain user options and definitions.

Object Definition All objects defining a coordinate system must be defined. This includes:

• Units of measure

• The meridian

• The spheroid

• The datum

• The geographic system

• The projected system

534 SRS Configuration Parameters

• The coordinate system

Object Sharing The general rules are:

1. Objects must be defined before being used.

2. IDs must be unique among all definitions

3. Objects are reused and shared based on their IDs

So the following,

<GEOCS ID="4312" NAME="MGI" >
<UNIT ID="9108" />
</GEOCS>

defines a new geographic system that reuses the unit definition 9108.

If the following is used,

<GEOCS ID="4312" NAME="MGI" >
<UNIT ID="9108" NAME="Toto" VALUE="0.5" />
</GEOCS>

it will lead to the (re)definition of unit 9108. This is fine if the unit does
not already exist but otherwise will redefine it for all instances.

This is used to redefine a local definition. It is useful when redefining a
datum to use another Bursa-Wolf transformation variant.

This is done by using the attribute UNSHARED="YES" to the definition.

<GEOCS ID="4312" NAME="MGI">
<UNIT ID="9108" />
<MERIDIAN ID="8901" />
<DATUM UNSHARED="YES" ID="6312" NAME="MGI" SHIFTX="577.326"
SHIFTY="90.129" SHIFTZ="463.919" ROTX="5.137" ROTY="1.474"
ROTZ="5.297" SCALEFACTOR="2.4232">
<SPHEROID ID="7004" />
</DATUM>
</GEOCS>

In this example, the datum will be a local copy inside the geographic
system

Unit Definition A unit is defined as

SRS Configuration Parameters 535

<UNIT ID="9001" NAME="meter" VALUE="1.0"/>

Spheroid Definition A spheroid (geoid) is defined as

<SPHEROID ID="7001" NAME="Airy 1830"
FLATTENING="299.3249646" SEMIMAJORAXIS="6377563.396"/>

Meridian Definition <MERIDIAN ID="8913" NAME="Oslo" VALUE="10.7229166666666"/>

or

<EXTENDEDMERIDIAN ID="50000" NAME="HonkKong"
VALUE="0.0024444444444444444" DELTA="-
0.001527777777777777777"/>

Items Description

ID The unit id

NAME The unit name

VALUE The unit factor relative to the
reference unit. The reference unit is
the meter for metric units and the
radian for angular units.

Items Description

ID The spheroid id

NAME The spheroid name

FLATTENING The 1/f value

SEMIMAJORAXIS The length of the semi-major axis in
meters

Items Description

ID The meridian id

NAME The meridian name

VALUE The offset from Greenwhich
longitude in degrees

536 SRS Configuration Parameters

Datum Definition A datum is defined as:

<DATUM ID="6124" NAME="Rikets_koordinatsystem_1990"
SHIFTX="414.1055246174"
SHIFTY="41.3265500042"
SHIFTZ="603.0582474221"
ROTX="0.8551163377"
ROTY="-2.1413174055"
ROTZ="7.0227298286"
SCALEFACTOR="0"
METHOD="CFR" >
<SPHEROID ID="7004" />
</DATUM>

DELTA The offset from Greenwhich latitude
in degrees (only used in
EXTENDEDMERIDIAN)

Items Description

ID The datum id

NAME The datum name

SPHEROID The spheroid definition

METHOD The method used to transform this
datum to the WGS84 datum (Values
are PV,CFR, GO or SHIFT) Default is
PV which stands for Position Method
Vector, Coordinate Frame Rotation,
Geographic Offset and Shift.

CFR/PV additional parameters (The
values comes from the EPSG
database)

SHIFTX The X shift in meters (default is 0)

SHIFTY The Y shift in meters (default is 0)

SHIFTZ The Z shift in meters (default is 0)

ROTX The X rotation (default is 0)

ROTY The Y rotation (default is 0)

ROTZ The Z rotation (default is 0)

SCALEFACTOR The scale factor

GO additional parameters

ROTX The X offset (default is 0)

ROTY The Y offset (default is 0)

SRS Configuration Parameters 537

Geographic System
Definition

<GEOCS ID="4125" NAME="Samboja">
<UNIT ID="9108" />
<MERIDIAN ID="8901"/>
<DATUM ID="6125" />
</GEOCS>

Projected System
Definition

<PROJCS ID="206" NAME="St Lucia 1955 / British West Indies Grid">
<UNIT ID="9001" />
<GEOCS ID="4606" />
<PROJECTION NAME="Transverse Mercator">
<PARAMETER NAME="central_meridian" VALUE="-62.0"/>
<PARAMETER NAME="false_easting" VALUE="400000.0"/>
<PARAMETER NAME="false_northing" VALUE="0.0"/>
<PARAMETER NAME="latitude_of_origin" VALUE="0.0"/>
<PARAMETER NAME="scale_factor" VALUE="0.9995"/>
</PROJECTION>
</PROJCS>

NOTE: The validity information is defined by four attributes:
X1,Y1,X2,Y2. Currently it is automatically defined for some projections
as Transverse Mercator. The Values must be set in the associated
geographic system.

Other IDs The projected and geographic system include other associated IDs by
having their tags added to the system's definition.

Items Description

ID The geograhic system id

NAME Thegeograhic system name

UNIT The angular unit definition

MERIDIAN The meridian definition

DATUM The datum definition

Items Description

ID The projected system id

NAME The projected system name

UNIT The projected unit definition

GEOCS The geographic system definition

PROJECTION The projection definition

VALIDITY The area of validity of the projected
system.

538 SRS Configuration Parameters

Currently the tags OGC, ESRI, DMS and ALIAS are defined. Their ID
attribute is associated to the system as another ID candidate which can
only be used to get the system reference through the SRS manager.
Generally, the ESRI ID is defined in another file named esri.txt and
associated with the EPSG ID through the INCLUDEESRI tag in the
main sref.xml file. Nevertheless it is possible to associate other IDs to
each defined objects, using the namespace mechanism (see below).

Ex:

<PROJCS ID="206" NAME="St Lucia 1955 / British West Indies Grid">
<DMS ID="My DMS ID" />
</PROJCS>

Other id domains can be added later using the ASSOCIATE element

<ASSOCIATE ID="206">
<DMS ID="My DMS ID" />
<FIPS ID="2900" />
</ASSOCIATE>

The ALIAS id is implicitly associated to the "name:" protocol and allows
IDs to be retrieved by their name of indirectly if they end an anchor.

Namespaces Users can define their own namespaces of id. For example, to add the
FIPS and NASA namespaces, add the block:

<NAMESPACE>
<DEFINE ID="FIPS" />
<DEFINE ID="NASA" />
</NAMESPACE>

Those declarations should occur after the STORAGE definition and
obviously before those ids are used.

Projection Definition <PROJECTION NAME="Transverse Mercator">
<PARAMETER NAME="central_meridian" VALUE="-62.0"/>
<PARAMETER NAME="false_easting" VALUE="400000.0"/>
<PARAMETER NAME="false_northing" VALUE="0.0"/>
<PARAMETER NAME="latitude_of_origin" VALUE="0.0"/>
<PARAMETER NAME="scale_factor" VALUE="0.9995"/>
</PROJECTION>

NOTE: The latitude and longitude in the projection parameters are
given in the underlying geographic system unit, e.g., longitudes are
relative to the prime meridian of the geographic system. If this is not the
case, use the REF attribute.

Items Description

SRS Configuration Parameters 539

NAME The projection name

PARAMETER A set of projection parameters

Each parameter has the following
attributes

NAME The parameter name

VALUE The parameter value, alternatively a
parameter can be given as deg min
sec using 3 attributes instead of one

DEG

MIN

SEC

REF If present, it must have the value
Greenwich to specify that the unit is
relative to Greenwich instead of the
prime meridian of the geographic
system.

Projection Parameters

Albers Conical

central_meridian

latitude_of_origin

standard_parallel_1

standard_parallel_2

false_easting

false_northing

EquiCylindrical

central_meridian

standard_parallel_1

false_easting

false_northing

Lambert Azimuthal Equal Area

central_meridian

latitude_of_center

azimuth

false_easting

false_northing

540 SRS Configuration Parameters

Lambert Conformal Conic same as Albers Conical

Lambert Conformal Conic 2sp same as Albers Conical

Lambert Conformal Conic 2sp
Belgium

same as Albers Conical

Lambert Conformal Conic 1sp same as stereographic

Mercator same as Polar stereographic

Mollweide

central_meridian

false_easting

false_northing

Oblique Stereographic

central_meridian

latitude_of_origin

scale_factor

false_easting

false_northing

Orthographic

central_meridian

latitude_of_origin

false_easting

false_northing

Polyconic same as Polar Stereographic

Polar Stereographic

central_meridian

latitude_of_center

false_easting

false_northing

Transverse Mercator same as Oblique Stereographic

Oblique Mercator

latitude_of_center

longitude_of_center

SRS Configuration Parameters 541

Coordinate System
Definition

This is required to support the new ids buils as
DatumIdCoordinateSystemId like 63266405.

<COORDINATESYSTEM ID="6413" NAME="Ellipsoidal 3D CS. Axes:
latitude, longitude, ellipsoidal height. Orientations: north,
east, up. UoM: deg, deg, m." >
<XYUNIT ID="9102" />
<ZUNIT ID="9001" />
</COORDINATESYSTEM>

rectified_grid_angle

azimuth

scale_factor

false_easting

false_northing

Hotine Oblique Mercator same as ObliqueMercator

Swiss Projection same as Oblique Mercator

Sinusoidal same as Mollweide

Spatial Oblique Mercator

false_easting

false_northing

ascending_orbit

inclination_orbit

satellite_ratio

path_flag

satellite_period

Spatial Oblique Mercator B

false_easting

false_northing

satellite_number

path_number

Items Description

ID The coordinate system id

NAME The coordinate system name

542 SRS Configuration Parameters

Structure of the ESRI
Mapping File

This file is a text file containing one line per mapping. Each line has the
following structure:

EpsgId=Esri Name[=IsForced]

Where

• EpsgId is the EPSG id

• Esri Name is the name used in the ESRI SDE Server

IsForced is an optional boolean whose usage is required to force
mapping of EPSG id greater than 32767

E.g.

26757=NAD_1927_StatePlane_Delaware_FIPS_0700
26758=NAD_1927_StatePlane_Florida_East_FIPS_0901
104113=GCS_Majuro=true

If IsForced is not set, all mappings for ids greater than 32767 are
ignored.

The current mapping file should not be modified by users, as it contains
the mapping for EPSG-defined ids. To define a mapping for a user
coordinate system, the preferred way is to add a mapping inside the
definition as:

<PROJCS ID="37200" NAME="Belge 1972 / Belge Lambert 72">
 <ESRI ID="PCS_Lambert_Conformal_Conic" />
 <UNIT ID="9001" />
 <GEOCS ID="4313" />
 <PROJECTION NAME="Lambert Conformal Conic 2sp">
 <PARAMETER NAME="central_meridian" DEG="4" MIN="22"
SEC="4.71"/>
 <PARAMETER NAME="false_easting" VALUE="149950"/>
 <PARAMETER NAME="false_northing" VALUE="5400149"/>
 <PARAMETER NAME="latitude_of_origin" VALUE="90.0"/>
 <PARAMETER NAME="standard_parallel_1"
VALUE="49.8333333333333"/>
 <PARAMETER NAME="standard_parallel_2"
VALUE="51.1666666666666"/>
 </PROJECTION>
</PROJCS>

XYUNIT The unit of the XY axis

ZUNIT The unit of the Z axis (if any)

SRS Configuration Parameters 543

Installing an
Optional Spatial
Transformation

You can install additional spatial transformations in order to extend the
set of standard available spatial transformations. For example, you can
choose to install the transformation from ED50 to etrf89 over Spain.

All the optional spatial transformations are available as jar files (such as
the cots-srs-ntv2.jar file) in the tools/optional directory inside
the ERDAS APOLLO Server installation directory.

You must install the files in the webapps/apollo-
catalog/webapp/WEB-INF/lib directory, the webapps/erdas-
apollo/webapp/WEB-INF/lib directory, the webapps/erdas-
apollo/webapp/WEB-INF/lib directory, and the webapps/apollo-
client/webapp/WEB-INF/lib directory. Then, invoke the ant
<servlet_engine> command in the install directory in order to rebuild
the webapps (See Rebuilding the Webapps). You must redeploy the
webapps for your changes to take effect.

You must also install the files in the ERDAS APOLLO Indexing System
Manager and ERDAS APOLLO Style Editor. Copy the files into the
tools/lib/java and tools/styleeditor/lib directories that are
located in the ERDAS APOLLO Server installation directory.

544 ERDAS IMAGINE Projection System Configuration

ERDAS IMAGINE Projection System
Configuration

WCS GIO Coverage decoders uses ERDAS IMAGINE raster engine to
decode metadata and raster data. The ERDAS IMAGINE Projection
System comes with an extensive library of built-in projections,
spheroids, and datums and is also referred to as EPRJ. This section
contains the following:

• Spheroids and Datums

• ERDAS IMAGINE Projection Configuration Files

• Understanding Datums, Spheroids, and Projections

Spheroids and
Datums

Parametric Datums A horizontal datum is a mathematical model of the Earth's surface that
is used to calculate the coordinate components (for example, latitude
and longitude) of a point on the surface of the Earth. This surface is
defined by a spheroid and the position and orientation relationship of
the spheroid to a reference mathematical model of the Earth. The
georeferenced coordinates are unique only if qualified by a datum. If
you go across two different datums during georeferencing without
considering the coordinate shift between them, the potential error can
be up to hundreds of meters.

There are three types of parametric datums supported in the IMAGINE
Projection System:

• The first type of datum is defined by seven parameters referred to
the reference ellipsoid WGS 84. The seven parameters are xy- z
translations, omega-phi-kappa rotations, and scale variations. The
Standard Molodensky transformation and sevenparameter
transformation are used for parametric datum shifts.

The seven-parameter datum corresponds to the EPSG Coordinate
Frame Transformation.

• The second type of datum is defined by NADCON grids in which the
coordinate shifts among datum NAD 27, NAD 83, and HARN are
calculated by bilinear interpolation.

ERDAS IMAGINE Projection System Configuration 545

• The third type of datum is defined by MREs based on DMA
documents. You can identify these datums by the labels ending with
MRE on the Spheroid tab.

Most parametric datums applied to global areas are basically spheroids
themselves without any position shift or rotations relative to WGS 84.
They are assumed to have the same centers as that of WGS 84. The
main reason to use the spheroid name as a global datum name is to
make a smooth transition from older to newer projection versions. Avoid
using them when other appropriate local datums are available.

It is not recommended that you use any datum if you are not sure
what it is. Using the wrong datum can introduce significant
geometric errors (up to a few hundred meters) when performing
datum shift calculation.

For more information about the parametric datum shift, refer to the DMA
TR 8350.2 document. For NADCON, please check with the National
Geodetic Survey.

Surface Datums Just as a parametric datum can be used to calculate the coordinate
components (for example, latitude and longitude) of a point on the
surface of the Earth, the surface datum is a reference surface to which
heights and elevations are referred.

There are four types of surface datums:

• Constant surface datums provide a constant shift value to apply to
the entire area.

Raster (or grid) surface datums use information stored in raster data
files to define shift surfaces.

Multiregression surface datums use an MRE to define the shift surface.

Vector (or point) surface datums are not currently supported in the
IMAGINE Projection System.

For more information about the parameters for each of these datum
transformations, see Grid Datum Example.

546 ERDAS IMAGINE Projection System Configuration

ERDAS IMAGINE
Projection
Configuration
Files

ERDAS IMAGINE uses the following projection configuration files to
define spheroids and datums:

• mapprojections.dat

• epsg.plb

• spheroid.tab

• sptable.tab

• units.dat

All of these files except for the epsg.plb file are located in this directory:

C:\Erdas\ApolloServer/tools/lib/gio/etc

mapprojections.dat There are three projections shown in the example below. Each
projection has an external or internal projection type and related
parameters that are recognized by EPRJ.

 "Kertau / R.S.O. Malaya (ch) (24571)" {
 EXTERNAL "eprj_rso" "Modified Everest" "Kertau 1948" 0
 0:4.0000000000000000E+004 1:0.0000000000000000E+000
 2:1.0000000000000000E+000 "benoit_chain"
 }
 "Kertau 1968 (4245)" {
 INTERNAL 0 "Modified Everest" "Kertau 1948" 0
 "dd"
 }
 "Kertau 1968 / Singapore Grid (24500)" {
 INTERNAL 51 "Modified Everest" "Kertau 1948" 0
 2:1.0000000000000000E+000 4:1.8125768268587654E+000
 5:2.2473673935663251E-002 6:3.0000000000000000E+004
 7:3.0000000000000000E+004 "meters"
 }

epsg.plb All of the *.plb files are located in the
C:\Erdas\ApolloServer/tools/lib/gio/etc/projections directory. They are
the standard projection categories that EPRJ uses. Each category
contains a number of projections.

The epsg.plb file is one of the many *.plb files in this folder. For more
information, see Projection Entry File Details[TBD].

spheroid.tab For most of the projections defined by EPRJ, the supported spheroids
and datums come from the spheroid.tab file. This file contains a table of
spheroids and datums that EPRJ uses.

ERDAS IMAGINE Projection System Configuration 547

 "Modified Everest" {
 11 6377304.063 6356103.039
 "Modified Everest" 0 0 0 0 0 0 0
 "Kertau 1948" -11 851 5 0 0 0 0
 "Kertau 1948 (MRE) Geoid" SURFACE
 {
 REGRESSION -90 0 90 360 0.418879020 -
 1.256637060 0.418879020 -42.725660040
 HEIGHT =
 {
 0 0 -3.833
 0 1 -2.701
 1 0 17.861
 0 2 0.386
 2 0 0.980
 3 0 -0.793
 3 1 -2.390
 4 2 -1.455
 }
 } DESCRIPTION = "Kertau Datum 1948 (West Malaysia and
Singapore) (MRE) Geoid, from DMA TR 8350.2"
 }

sptable.tab In the example below, 'EAST' is the zone. In other cases, the zone is
expressed as a number or alpha-numerically.

 "GEORGIA" {
 "EAST" 1 NAD27 3651 -1001
 0.6378206400000000e+07 0.6768657997291094e-02 -
 0.8201000000000000e+08
 0.9999000000000000e+00 0.0000000000000000e+00
 0.0000000000000000e+00
 0.3000000000000000e+08 0.1524003048006096e+06
 0.0000000000000000e+00
 }
 "GEORGIA" {
 "WEST" 1 NAD27 3676 -1002
 0.6378206400000000e+07 0.6768657997291094e-02 -
 0.8401000000000000e+08
 0.9999000000000000e+00 0.0000000000000000e+00
 0.0000000000000000e+00
 0.3000000000000000e+08 0.1524003048006096e+06
 0.0000000000000000e+00
 }

units.dat Units.dat is an IMAGINE Projection System file that is used to convert
distance, angle, time, mass, and so on. It is a simple ASCII file that
contains definitions for various types of unit categories such as
distance, angle, or time. Within each category, there is a definition that
consists of a unit name followed by the conversion to the standard unit.

Here is an example of the entry for distance:

548 ERDAS IMAGINE Projection System Configuration

 distance
 {
 meters 1.0 ;
 meter 1.0 ;
 feet 0.3048006099012192 ;
 .
 .
 .
 }

Understanding
Datums,
Spheroids, and
Projections

The datums, spheroids, and projections are found in the
C:\Erdas\ApolloServer/tools/lib/gio/etc/spheroid.tab file, which is used
by the ERDAS IMAGINE Projection System.

The following listing shows the entry from the spheroid.tab file for the
Australian National spheroid:

"Australian National" {
15 6378160.0 6356774.719
"Australian National" 0 0 0 0 0 0 0
"Anna 1 Astro 1965" -491 -22 435 0 0 0 0
"Australian Geodetic 1966" -133 -48 148 0 0 0 0
"Australian Geodetic 1984" -134 -48 149 0 0 0 0
"Australian Geodetic 1966 (MRE) Geoid" SURFACE
{
REGRESSION -90 0 90 360 0.052359880
1.413716760 0.052359880 -7.016223920
HEIGHT =
{
0 0 -4.258
0 1 2.740
0 2 70.479
1 1 -34.946
2 0 12.676
1 2 24.680
0 4 -348.586
2 2 -14.488
3 1 122.302
0 5 37.035
4 1 -17.307
5 0 -6.704
0 6 645.556
3 3 -80.304
5 1 -108.866
0 7 -19.475
3 4 -271.301
0 8 -430.089
8 0 -5.561
2 8 97.772
4 6 449.462
8 2 -69.354
4 7 -692.991
9 3 265.504

ERDAS IMAGINE Projection System Configuration 549

5 9 1311.842
}
} DESCRIPTION = "Australian Geodetic 1966 (MRE) Geoid,
from DMA TR 8350.2"
"Australian Geodetic 1984 (MRE) Geoid" SURFACE
{
REGRESSION -90 0 90 360 0.052359880
1.413716760 0.052359880 -7.016223920
HEIGHT =
{
0 0 -4.155
0 1 3.939
1 0 14.693
0 2 65.144
1 1 -18.651
2 0 10.460
3 0 -120.684
0 4 -267.125
3 1 39.025
1 4 -74.039
4 1 -26.446
5 0 301.719
0 6 445.176
5 1 -33.732
6 0 16.358
3 4 384.399
7 0 -312.773
0 8 -257.076
3 5 -122.384
6 2 -117.856
8 0 -18.365
5 4 -502.439
8 1 9.820
9 0 110.502
1 9 54.807
7 5 915.970
8 7 -3661.876
9 9 3579.951
}
} DESCRIPTION = "Australian Geodetic 1984 (MRE) Geoid,
from DMA TR 8350.2"
}

"Australian National" is the name of the spheroid. The next line defines
its sequence number in the spheroid.tab file, the semi-major axis, and
the semi-minor axis (in meters). The general syntax is:

"Spheroid Name" {
Sequence_Number Semi-Major_Axis Semi-Minor_Axis
"Spheroid Name" 0 0 0 0 0 0 0
Datums...
}

550 ERDAS IMAGINE Projection System Configuration

Seven-Parameter
Ellipsoidal
Transformation

Following the spheroid definition are datums associated with each
spheroid. There are two types of datums that can be used by the
IMAGINE Projection System: the ellipsoidal datum and the surface
datum. The ellipsoidal datums are recorded in terms of the seven
parameters required to calculate a shift to the WGS84 datum.

The seven-parameter ellipsoidal transformation corresponds to
The EPSG coordinate frame transformation.

Any datums added to the spheroid.tab file must also be recorded as
datum shift parameters to WGS84. The parameters are recorded in one
of two ways, as shown in the two examples that follow.

Parametric Datum Example

The example below shows a parametric datum:

"Datum Name" [PARAMETRIC] dx dy dz rw rj rk ds
[DESCRIPTION = string]

Where:

dx, dy and dz are the x,y,z translations to WGS84, in meters, rw, rj,
and rk are the omega, phi, kappa rotations to WGS84, in radians and
scientific notation, and, ds is the scale change to WGS84 in scientific
notation. The keyword ELLIPSOIDAL is optional. The text DESCRIPTION
of the datum is also optional

Most parametric datums applied to global areas are basically spheroids
themselves without any position shifts or rotations relative to WGS 84.
They are assumed to have the same centers as that of WGS 84. The
use of the "global datum" syntax below is no longer required by the
IMAGINE Projection System.

Grid Datum Example

The example below shows a grid datum:

"Datum Name" GRID gridfilename [DESCRIPTION =
Description of the datum]

Where:

The keyword GRID is mandatory.

ERDAS IMAGINE Projection System Configuration 551

The gridfilename is the raster file used to define the datum. The
raster files used for the transformations must reside in the
C:\Erdas\ApolloServer/tools/lib/gio/etc folder. No paths can be used to
point to these files.

The text DESCRIPTION of the datum is optional.

Spheroid Example The example below shows a spheroid:

"Spheroid Name" 0 0 0 0 0 0 0

The main reason to use the spheroid name as a global datum name is
to make a smooth transition from older to newer projection versions.
Avoid using them when other appropriate local datums are available.

You can add new datums to an existing spheroid by editing the
spheroid.tab file with any text editor and adding a new line for each
datum in the section for that spheroid. You can also add a new spheroid
with associated datums by adding a block of text to the end of the file
using the following syntax:

"Spheroid Name" {
Sequence_Number Semi-Major_Axis Semi-Minor_Axis
"Datum Name 1" dx dy dz rw rj rk ds
"Datum Name 2" dx dy dz rw rj rk ds
"Datum Name 3" dx dy dz rw rj rk ds
"Datum Name n" dx dy dz rw rj rk ds
}

Surface Datum Types In addition to the ellipsoidal datum, the ERDAS IMAGINE Projection
System supports surface datums. There are four types of surface
datums:

• Constant

• Raster (or Grid)

• Vector (or Point)

• Multiregression

Of these, the ERDAS IMAGINE Projection System currently supports
the constant, raster, and multiregression datums.

Each one of the three supported datums has its own parameters.

552 ERDAS IMAGINE Projection System Configuration

CONSTANT datums provide a constant shift value to apply to the entire
area.

"Datum Name" SURFACE [BASEDATUM="DatumName"]
{
CONSTANT minlat minlon maxlat maxlon latshift lonshift
htshift
}
DESCRIPTION = "transformation description"

Where:

SURFACE indicates the type of surface datum

BASEDATUM indicates the datum that is being used as the base for the
shift surface. If no BASEDATUM is declared, the BASEDATUM defaults
to the datum with the same name as the spheroid. Any other basedatum
must be declared and predefined based upon the same base spheroid.
The BASEDATUM can be either an ellipsoidal or surface datum.

CONSTANT indicates that a constant shift is performed on the
BASEDATUM.

minlat provides the minimum latitude value of the bounding box in
decimal degrees.

minlon provides the minimum longitude value of the bounding box in
decimal degrees.

maxlat provides the maximum latitude value of the bounding box in
decimal degrees.

maxlon provides the maximum longitude value of the bounding box in
decimal degrees.

latshift the amount of shift in the latitude direction in decimal
seconds.

lonshift the amount of shift in the longitude direction in decimal
seconds.

htshift the amount of shift in the elevation in meters.

DESCRIPTION provides a description about the transformation,
including the basedatum and the source for the shift constants.

RASTER surface datums use information stored in raster data files to
provide the transformation information.

ERDAS IMAGINE Projection System Configuration 553

The raster files used for the transformations must reside in the
C:\Erdas\ApolloServer/tools/lib/gio/etc older. No paths can be used to
point to these files.

"Datum Name" SURFACE [BASEDATUM="DatumName"]
{
RASTER RESAMPLE="Resample_Method"
noDataValue
LATITUDE = "LatFile"
LONGITUDE = "LonFile"
HEIGHT = "HtFile"
}
DESCRIPTION = "transformation description"

Where:

SURFACE indicates the type of surface datum.

BASEDATUM indicates the datum that is being used as the base for the
shift surface. If no BASEDATUM is declared, the BASEDATUM defaults
to the datum with the same name as the spheroid. Any other basedatum
must be declared and predefined based upon the same base spheroid.
The BASEDATUM can be either an ellipsoidal or a surface datum.

RASTER indicates that a raster shift surface based on the BASEDATUM
is defined.

RESAMPLE defines the resampling method used on the raster files. The
BILINEAR resampling method is the default and is optional. The
BICUBIC SPLINE resampling method must be declared.

noDataValue defines the value to substitute for null values in the shift
surface files.

LATITUDE indicates the raster file to use as the latitude shift surface.
This file is optional.

LONGITUDE indicates the raster file to use as the longitude shift surface.
This file is optional.

HEIGHT indicates the raster file to use as the elevation shift surface. This
file is optional.

While LAT, LON, and HEIGHT are all optional parameters, at least
one of these three must be specified to define a valid surface
datum.

554 ERDAS IMAGINE Projection System Configuration

DESCRIPTION provides a description about the surface datum, including
a more descriptive datum name and the source for the shift files.

MULTIREGRESSION surface datums use an MRE to represent the datum
shift surface.

"Datum Name" SURFACE [BASEDATUM="DatumName"]
{
REGRESSION minlat minlon maxlat maxlon
A B C D
LATITUDE = {Vexp1 Uexp1 Coeff1
Vexp2 Uexp2 Coeff2
Vexpn Uexpn Coeffn
}
LONGITUDE = {Vexp1 Uexp1 Coeff1
Vexp2 Uexp2 Coeff2
Vexpn Uexpn Coeffn
}
Height = {Vexp1 Uexp1 Coeff1
Vexp2 Uexp2 Coeff2
Vexpn Uexpn Coeffn
}
} DESCRIPTION = "transformation description"

Where:

SURFACE indicates the type of surface datum.

BASEDATUM indicates the datum that is being used as the base for the
shift surface. If no BASEDATUM is declared, the BASEDATUM defaults
to the datum with the same name as the spheroid. Any other basedatum
must be declared and predefined based upon the same base spheroid.
The BASEDATUM can be either an Ellipsoidal or a surface datum.

REGRESSION indicates that a multiregression transformation will be
performed on the BASEDATUM.

minlat provides the minimum latitude value of the bounding box in
decimal degrees.

minlon provides the minimum longitude value of the bounding box in
decimal degrees.

maxlat provides the maximum latitude value of the bounding box in
decimal degrees.

maxlon provides the maximum longitude value of the bounding box in
decimal degrees.

A, B are the coefficients for the longitude shift. If v is the latitude,

ERDAS IMAGINE Projection System Configuration 555

V = A * v + B

C, D are the coefficients for the latitude shift. If u is the latitude,

U = C * u + D

LATITUDE lists the exponents and coefficients in decimal seconds for
the MRE. Each row gives the V exponent, the U exponent, and the
coefficient for one term in the MRE. The sum of all of these terms is the
result of the MRE. This surface is optional.

LONGITUDE lists the exponents and coefficients in decimal seconds for
the MRE. Each row gives the V exponent, the U exponent, and the
coefficient for one term in the MRE. The sum of all of these terms is the
result of the MRE. This surface is optional.

Height lists the exponents and coefficients in meters for the MRE.
Each row gives the V exponent, the U exponent, and the coefficient for
one term in the MRE. The sum of all of these terms is the result of the
MRE. This surface is optional.

While LAT, LON, and HEIGHT are all optional parameters, at least
one of these three must be specified to successfully perform a shift
surface transformation.

DESCRIPTION provides a description about the surface datum, including
a more descriptive datum name and the source for the shift files.

NOTE: For detailed information on how the ERDAS IMAGINE
Projection System works, please see the ERDAS IMAGINE
documentation.

[1] A georeferenced image has a position, a location that is either stored
in the file or in a world file associated with the image. Please refer to the
Image Data Model chapter for more information on this subject.

556 ERDAS IMAGINE Projection System Configuration

	ERDAS APOLLO Administrator’s Guide
	Table of Contents
	List of Tables
	List of Figures
	Configuration Overview
	The Services Framework Architecture
	Framework Components
	Scalable J2EE Component
	ERDAS Servlets
	Connectors and Providers
	Databases, Flat Files, and Imagery
	Configuration Files

	Basic Configuration
	Servlet Engine Configuration
	Actual Servlet Level Configuration
	Data Level Configuration
	Geographic Information and Transactional Configuration

	Additional Configuration Steps

	Service Configuration
	Configuration Methodology
	Data services
	Provider Concepts
	Configuring a Provider
	Steps to configure a Provider
	Sample providers.fac
	How to Control the Provider Configuration

	Catalog service
	Deployment and Administration of the Server
	Environment Configuration
	Database Schema Management
	Security Configuration
	Logging Configuration

	Typical Scenarios
	Publishing Vector Data in WFS
	Shapefile Provider on top of a Data Directory
	Create a Vector Provider on top of Oracle Data
	Create a Transactional Provider over Oracle
	Create a PostgreSQL/PostGIS Vector Provider
	Create an ArcSDE Vector Provider
	Create a Vector Provider on top of GML Data
	Create Styles on Vector Data

	Publishing Images in WMS
	Raster Images

	Publishing Raster Data in WCS
	Simple Coverage Services
	Mosaic and List Coverage Services
	ArcSDE-Raster

	Populate, Browse and Query the Catalog
	Authentication
	Publish a service
	Data Discovery
	Using the CSW endpoint

	Assembling Services and Combining Data
	Pyramid WMS
	Cascading with an OpenGIS WMS Context

	Chaining Services
	Proxying a OpenGIS- compliant WMS
	Proxying a OpenGIS- compliant WFS
	SLD Portrayal Service for Features and Coverages

	Producing Smart Maps
	WMS by Portraying Features
	Map Dressing Service
	Advanced Portrayal
	Add a Legend

	Sample WFS Requests with Filters
	Filter by FeatureID
	Filter Equal to an Alphanumeric Property
	Filter Equal with Namespaces
	Filter on Two Alphanumeric Properties
	Geometry Filter: Operator BBOX
	Geometry Filter: Operator Intersects with a Given Polygon
	Geometry Filter: Operator Beyond a Given Point
	Filter combining Spatial and Non-Spatial Operators

	Manage Data and Enhance Services
	Restrict Data
	Disable Interfaces
	Hiding Columns
	Disable Output Formats

	Add a Copyright or Watermark
	Add a CRS to WCS GIO Decoder Framework
	ERDAS IMAGINE Projection Engine
	Add an EPSG Code
	Define a CRS

	Filter in a GetMap
	Add User Functions
	Add a Java class Function
	Add a Datasource Function

	Set Up a WFS with GML2 Objects
	Insert Data into the Provider
	Curves, Surfaces, Rings
	Measurements, Units of Measure
	Temporal Properties and Operators

	Portrayal Capabilities
	Data Portrayal
	Rules and Styles
	Rules, the Portraying Logic
	Styles, Definition of the Look and Feel

	Creating Maps
	Styles Templates Description

	Creating Styles
	Languages

	Deploying Styles
	Deployment Structure

	Using the Map Dressing Service
	Grid
	North Arrow
	Scale Bar
	Image Border
	Complete Dressing Example

	Displaying Statistics in a Map
	Call
	Output Information
	Definitions
	Portrayal Statistics Output Values

	Producing KML
	Limitations
	Fast 2D Rendering
	Coverage Portrayal

	Output Formats
	Overview
	Image Outputs
	Graphic Interlaced Format (GIF)
	Joint Photographic Experts Group (JPEG)
	Keyhole Markup Language (KML)
	Scalable Vector Graphics (SVG)
	GeoTIFF
	Portable Network Graphic (PNG)
	X-BMP
	WBMP

	Text Outputs
	Plain Text Output
	HTML
	GeoRSS
	JSON

	Data Outputs
	Shapefiles
	GML 2/3
	GeoTIFF
	JPEG2000, ECW, NITF, DTED
	ERDAS IMG

	Coordinate Transformations
	SRS Concepts
	Add a Custom SRS
	Projection System Information
	Modify epsg.plb
	Create usersref.xml
	Integrate usersref.xml
	Modify coordinate_system_cate gory.xml
	Rebuild and Deploy the Webapps
	Test the Custom SRS in the Data Manager
	Test the Custom SRS in the Web Client

	Usage and Syntax of the SRS/CRS Parameter

	Administration of ERDAS APOLLO
	Introduction
	Types of Administration

	Servlet-Engine Level Configuration Parameters
	Servlet-Engine Level Security

	Servlet-Specific Configuration Parameters (providers fac)
	Parameters in the providers fac File
	Framework Configuration
	WMS (map) Servlet
	WFS (vector) Servlet
	WCS (coverage) Servlets

	Checks
	General Checks
	Connections

	Logging
	Debugging

	Performance Tuning
	Introduction
	Tuning the GetMap Request
	Tuning the Data Extraction
	Tune the RDBMS configuration
	Tuning the Database Indexes
	Tuning the Native Request

	Tuning Portrayal
	Tuning the Raster Data Sources
	Tuning Parameters and Configuration for WCS GIO Decoders
	global- processmanager.propert ies:
	local- processmanager.propert ies:
	Tuning the Execution Environment
	Conclusions

	Using Apache Ant to Rebuild the Webapps
	Deploying WAR Files on Supported Servlet Engines
	JBoss
	Jakarta Tomcat

	ERDAS APOLLO Tools and Viewers
	Service Tester
	Customizing Service Tester Templates

	Data Indexer
	Image Indexing with the Data Manager
	Coverage Indexer
	Shapefile RTree Builder

	Vector Services Utilities
	Schema Generator
	From-SQL Generator
	WFS Loader

	Pyramid and Mosaic Builder
	Pyramid Builder
	WMS Tiler

	Catalog Web Interface
	Log In to the Web Application
	Searching and Browsing Content
	Advanced Search
	Publishing content
	Testing the CSW endpoint
	Administration options

	Specifying the Storage Directories for Metadata, Thumbnails, & Pyramids
	Changing the Storage Location for Metadata Files
	Changing the Storage Location for Thumbnail Files
	Changing the Storage Location for Pyramid Files

	General Server Configuration
	Install Properties

	Hiding Clear Text Passwords in Configuration Files
	Configuration and Customization
	Internationalization
	ERDAS APOLLO Web Client Configuration

	The ERDAS APOLLO Style Editor
	Exploring Data
	Getting started
	Procedure Setting the Connection Time-out
	Data Sources
	Layers
	Map Navigation
	Views

	Styling Data
	Brief Introduction to Styling
	Managing Styles
	Scale Range Management

	Rules Reference Guide
	“Uniform" Rule
	Classifications
	“Uniform Roads" Rule
	Known Symbol" Rule
	Feature Numberer" Rule
	HTML Report" Rule
	Variable Markers" Rule
	Patterner" Rule
	Symbol Roller" Rule
	Common Elements

	FAQ/Troubleshooting
	FAQ
	Troubleshooting

	Rebuilding the Webapps
	Deploying WAR Files on Supported Servlet Engines
	JBoss
	Jakarta Tomcat

	Detailed Parameters of a Provider
	Lists of Possible Parameters
	Parameters Common to All Types of Providers
	Parameters for the Map Framework
	Parameters for Vector Providers (WFS Servlet)
	Parameters for the Coverage Framework

	Provider Types
	Connectors
	WFS - or Vector - Connectors
	Oracle Connector
	Oracle JDBC Thin Driver
	Oracle JDBC OCI Driver
	Differences between Oracle OCI and Thin Driver
	Oracle RAC
	PostgreSQL/PostGIS
	Shapefiles
	ArcSDE
	DBF Files
	Microsoft
	ODBC data source
	MS-Access
	SQLServer 2008
	GML and GML-T
	DGN
	Proxy WFS
	Simple Framework

	WMS - or Raster - Connectors
	Simple Image
	Image Collection
	Multiple Images
	Proxy WMS
	Map Dressing
	Pyramid Provider
	Portray Provider
	ArcSDE-Raster Provider
	Context Provider
	Oracle 10g GeoRaster Provider

	WCS - or Coverage - Connectors
	Simple Coverage
	Indexed Coverages
	Multi Simple Coverages
	Hierarchical Coverages
	Oracle 10g GeoRaster Coverages
	HDF-EOS Coverages
	Pyramid Provider

	GML Application Schema and Mapping to Databases
	Introduction
	Key Concepts
	Application Schema
	GML Application Schema
	Feature and Feature Type
	Mapping

	Configuration Overview
	Feature Schema Configuration
	GML Application Schema Construction
	The Steps to Construct the Feature Type Schema

	Feature Mapping
	Mapping Concepts
	Mapping Methodology
	Mapping Tags Description
	Explicit Mapping Definition Steps
	SQL Mapping Definition Steps
	Automatic Mapping Definition Steps
	Relational (Explicit) Mapping Definition Steps
	Mapping of Enumerations
	How to Control Mapping Correctness

	Moving to GML3
	ERDAS APOLLO support of GML3
	GML3 Concepts and Schemas
	Setting Up a ERDAS WFS Serving GML3
	Migrating a GML2 WFS to GML3
	Setting Up a ERDAS WFS Serving GML-SF (Simple Feature)

	Feature Mapping Tags
	Mapping Section <MAPPING>
	Metadata Section <INFO>
	Capabilities Feature Type Section: <EXPORT>
	Collection Section: <COLLECTION>
	Options Section: <OPTION>
	User Functions Section: <UserFunction>
	Units Definition Section: <UnitDefinition>
	Units Association Section: <UnitAssociation>
	WMS Layer Hierarchy Section: <WMS>

	Coverage and Image Servers
	Image Server Concepts
	Image Provider Types

	Configuring Individual Coverages/Images
	Configuring a Mosaic or a list of Coverages/Images
	Image Layers Index File

	The Image Data Model
	The HDR File Organization
	Layout
	The World Coordinate File Organization
	The Color File Organization
	Header Files Summary Table
	USGS Metadata
	Limitations and Constraints

	Imagery Connectors
	The GDAL Tool
	GDAL Installation Notes
	GDAL Configuration

	Very Large Coverage Manager
	Very Large Coverage Management Description
	Very Large Image Management
	Temporary Files Can Be Very Big
	Configuration
	Limitations
	Issues
	Examples

	Advanced Configuration
	Metadata URL
	Templates
	Storage
	Metadata Configuration in the WMS and WCS Servlets
	Metadata Configuration in the WFS Servlet

	Legend URL
	The Map Generation Transformer
	Introduction
	Using MapGen
	MapGen Tags and Attributes
	The <MapGen> Tag
	Feature Properties (Re)definition
	scaleMin and scaleMax
	Filter - The "Where" Tag
	The "Last" Tag
	Warning: MapGen and Portrayal Rules
	Scale Dependent Table

	Data filtering
	Advanced Security
	Coarse-Grained Security
	Basic ERDAS APOLLO Security
	Fine-Grained Security
	Security at the Data Source Level
	Login Credential Map Example
	Oracle Proxy Session Example
	Masking

	SRS Configuration Parameters
	Structure
	STORAGE
	OPTION
	INCLUDE

	Object Definition
	Object Sharing
	Unit Definition
	Spheroid Definition
	Meridian Definition
	Datum Definition
	Geographic System Definition
	Projected System Definition
	Other IDs
	Namespaces
	Projection Definition
	Coordinate System Definition
	Structure of the ESRI Mapping File

	Installing an Optional Spatial Transformation

	ERDAS IMAGINE Projection System Configuration
	Spheroids and Datums
	Parametric Datums
	Surface Datums

	ERDAS IMAGINE Projection Configuration Files
	mapprojections.dat
	epsg.plb
	spheroid.tab
	sptable.tab
	units.dat

	Understanding Datums, Spheroids, and Projections
	Seven-Parameter Ellipsoidal Transformation
	Spheroid Example
	Surface Datum Types

